Polynomial Sample Complexity for Blackbox Reductions in Mechanism Design with Additive Bidders

Arya Maheshwari

Princeton University

April 28, 2025

Mentors: Prof. Matt Weinberg, Eric Xue

Roadmap

- Background
- Existing procedure (Replica-Surrogate Matching)
- See Yellow With the Second Second
- Three main ideas for our solution

Background: Blackbox Reductions

This talk: welfare maximization setting.

What is a blackbox reduction?

- Input: *m* bidders (with types drawn from some distribution *D*), *n* items
- ullet Given: some algorithm ${\mathcal A}$ achieving some welfare guarantee ${\sf Val}_{\mathcal A}(D)$
- **Goal**: some incentive-compatible *mechanism* $\mathcal M$ that achieves a similar welfare guarantee $\operatorname{Val}_{\mathcal M}(D)$ to $\operatorname{Val}_{\mathcal A}(D)$

"Incentive-compatible" means *Bayesian* incentive compatibility (**BIC**): optimal for a bidder to report truthfully *assuming* all other bidders do so.

Specific question: **sample complexity**:

Existing procedures require $\exp(n)$ samples from D. Can we achieve $O(\varepsilon)$ -welfare apx. in $\operatorname{poly}(n, m, \frac{1}{\varepsilon})$ samples under structured valuations?

Background: Notation and Model

- n items, m (independent) bidders, 1 seller
- Bidder $k \in [m]$ type drawn from $D^{(k)}$ (assume supp $(D^{(k)}) \subseteq [0,1]^n$).
- Valuations: $v_k : \operatorname{supp}(D^{(k)}) \times \{0,1\}^n \to \mathbb{R}_{\geq 0}$
- Assumption 1: independent items: $D^{(k)} = \times_{t \in [n]} D_t^{(k)}$
- Assumption 2: additive valuations: $v_k(t_k, x) = \sum_{i \in [n]} x_i \cdot (t_k)_i$
- Expected welfare: $Val_{\mathcal{A}}(D)$ from algorithm \mathcal{A} , $Val_{\mathcal{M}}(D)$ from mechanism \mathcal{M}

Main Result

Main Result: Suppose $D=\times_{k\in[m]}D^{(k)}$ is a product distribution over m bidders with additive valuations over n independent items, with each $D^{(k)}$ satisfying a general "regularity" condition. Let $\mathcal A$ be any algorithm achieving expected welfare $\operatorname{Val}_{\mathcal A}(D)$. Then there exists an exactly-BIC mechanism $\mathcal M$ that achieves $\operatorname{Val}_{\mathcal M}(D) \geq \operatorname{Val}_{\mathcal A}(D) - O(\varepsilon)$ using at most $\operatorname{poly}(n,m,\frac{1}{\varepsilon})$ samples.

Extensions:

- (Forthcoming) Removing the regularity condition
- (Easy) Generalizing additive valuations to e.g. 1-Lipschitz
- (Hope) Extend objective to revenue maximization

Note: We focus on sample complexity. No claims about runtime.

Base Procedure: Replica-Surrogate Matching [HKM11]

- Goal: Given input algorithm \mathcal{A} as a blackbox, create an exactly BIC mechanism \mathcal{M} (with good welfare guarantee relative to \mathcal{A}) for multiple bidders.
- Plan: Turn the multi-bidder reduction problem into m separate single-bidder reduction problems
- Idea: Create a separate "interface layer" for each bidder that wraps around A in a way that (a) guarantees BIC while (b) ensuring small-enough objective (i.e. welfare) loss

Citation: Overview of replica-surrogate matching is drawn from prior survey in [MW24].

Base Procedure: Replica-Surrogate Matching (Continued)

Interface: surrogate selection procedure, run separately for each bidder k.

- Draw some number of *surrogate* types from $D^{(k)}$. (\star)
- Match bidder k to a surrogate that will be inputted to A in k's place.
- How to match: by drawing make-believe *replica* types from $D^{(k)}$, and then having bidder k "compete against" replicas for a surrogate.

<u>Upshot</u>: Competition with replicas is just a way to *induce prices* on surrogate types for each bidder in such a way that:

- makes the new mechanism (based on adding this interface) BIC
- approximately preserves welfare.

Citation: Overview of replica-surrogate matching is drawn from prior survey in [MW24].

^{(*):} In general, might have two different distributions: distribution D for A (\Rightarrow surrogates from D) vs. input distribution D' for new mechanism (\Rightarrow replicas from D').

Replica-Surrogate Matching: Algorithm [HKM11, RW15]

Procedure: For each bidder k, run Phase 1. Then run Phase 2.

Phase 1: Surrogate Selection

- **9** Sample S values from $D^{(k)}$, and call these the *surrogates* $s \in \mathcal{T}_k^S$.
- ② Sample S-1 values from $D^{(k)}$; elicit k's type. Together, call these the *replicas* $r \in \mathcal{T}_k^S$.
- ① Create a complete bipartite graph G_k on vertices V_k = r ⊔ s. Weight v_{ij} of the r_i ↔ s_j edge = "r_i's value for being matched to s_j" (in expectation over other bidders' draws from D_{-k}):

$$v_{ij} = \underset{t_{-k} \sim D_{-k}}{\mathbb{E}} \left[\underset{o \sim \mathcal{A}(s_j; t_{-k})}{\mathbb{E}} [v_k(r_i, o)] \right]$$

• Viewing edge weights as valuations of replicas ("buyers") for surrogates ("items"), run the VCG mechanism over matchings, i.e. compute the maximum-weight matching and corresponding VCG payments. Note: this will be a perfect matching (non-negative edges).

Phase 2: Surrogate Competition

- For each bidder k, let b_k denote the surrogate that was matched to the replica representing bidder k in G_k .
- ② Run \mathcal{A} on input bid $b=(b_1,\ldots,b_n)$. Let $o=(o_1,\ldots,o_n)=\mathcal{A}(b)$ be the resulting outcome.
- **a** Each bidder k gets o_k and pays the VCG payment for getting surrogate b_k in Phase 1.

Replica-Surrogate Matching: BIC Analysis

Claim (BIC): if all bidders $j \neq k$ report truthfully, then bidder k is incentivized to report truthfully. [HKM11, RW15]

- "Stationarity": For any j, if bidder j reports truthfully to \mathcal{M} , then the distribution of surrogate matched to bidder j is precisely $D^{(j)}$.
 - Justification: via Principle of Deferred Decisions
 - Interpretation: adding the interface layer does not alter the distribution
- Implication: Assuming all bidders $j \neq k$ report truthfully, edge weights correctly captures bidder k's actual value for the surrogate.
 - Justification: recall that edge weights are computed in expectation over *draws* of all other bidders (i.e., assuming truthful reports).
- VCG pricing then means that it is optimal to report type truthfully.

Citation: Overview of replica-surrogate matching is drawn from prior survey in [MW24].

Replica-Surrogate Matching: Welfare Analysis

Welfare claim $(Val_{\mathcal{M}}(D) \approx Val_{\mathcal{A}}(D))$: more involved. [HKM11]

 $\operatorname{Val}^k_{\mathcal{M}}(D)$: average "value of replica for surrogate it's matched to" $\operatorname{Val}^k_{\mathcal{A}}(D)$: average "value of surrogate for itself"

Main ideas:

- If a matching were to match a *large-enough* fraction of replicas to *close-enough* surrogate types, then it has *high-enough* weight to not lose that much welfare (i.e. $Val_{\mathcal{M}}(D)$ close to $Val_{\mathcal{A}}(D)$).
- ullet For large enough S (# of surrogates), the expected fraction of replicas that can be matched to close-enough surrogates is large-enough.
- The maximum-weight matching is at least this good.

Replica-Surrogate Matching: Welfare Analysis

Welfare claim $(Val_{\mathcal{M}}(D) \approx Val_{\mathcal{A}}(D))$: more involved. [HKM11]

 $\operatorname{Val}^k_{\mathcal{M}}(D)$: average "value of replica for surrogate it's matched to" $\operatorname{Val}^k_{\mathcal{A}}(D)$: average "value of surrogate for itself"

Main ideas:

- If a matching were to match a large-enough fraction of replicas to close-enough surrogate types, then it has high-enough weight to not lose that much welfare (i.e. $Val_{\mathcal{M}}(D)$ close to $Val_{\mathcal{A}}(D)$).
- For large enough S (# of surrogates), the expected fraction of replicas that can be matched to close-enough surrogates is large-enough.
- The maximum-weight matching is at least this good.

Key Tension: Exponential Cover, Polynomial Samples?

How large does *S* need to be?

- Relates to an appropriate notion of size of underlying type space.
- For a type space like $[0,1]^n$, this turns out to be **exponential** in n. :(

⇒ Key tension:

- Need exponentially many replicas/surrogates to run matching,
- ullet Yet only want to take polynomially many samples from each $D^{(k)}$... ?

Our main result: designing a mechanism that achieves both of these desiderata.

Core Idea 1: Sampling by Products

Recall our assumption on valuations: additive over independent items.

Idea: leverage independence over items:

- Recall each bidder's distribution is $D^{(k)} = \times_{t \in [n]} D_t^{(k)}$.
- Alternate way to draw samples from $D^{(k)}$: draw samples \mathcal{S}_t from each marginal $D_t^{(k)}$, then construct product set $\mathcal{S} := \times_{t \in [n]} \mathcal{S}_t$.

Caveat: values in S are not i.i.d. samples!

Issue: including bidder report before constructing products

- ⇒ bidder "influences" a fraction of replicas
- ⇒ bidder could manipulate surrogate prices by misreporting

Core Idea 2: Learning (Approximate) Surrogate Prices

Question: can we *decouple* learning good surrogate prices from the bidder's report?

Idea: Two phases of replica draws:

- Draw training replicas (via products): do not include the bidder; learn correct prices for {training replicas}-{surrogates} matching
- ② Draw real replicas (via products): do include bidder, and use prices from (1) in {real replicas}-{surrogates} matching.

Intuition: with enough samples, with high probability prices computed on training replica set will be *pretty good* for the real replica set.¹

 $^{^{}m 1}$ Proof that formalizes this intuition is where additivity of valuations comes in.

Core Idea 2: Learning (Approximate) Surrogate Prices

Question: can we *decouple* learning good surrogate prices from the bidder's report?

Idea: Two phases of replica draws:

- Draw training replicas (via products): do not include the bidder; learn correct prices for {training replicas}-{surrogates} matching
- ② Draw real replicas (via products): do include bidder, and use prices from (1) in {real replicas}-{surrogates} matching.

Intuition: with enough samples, with high probability prices computed on training replica set will be *pretty good* for the real replica set.¹

 $^{^{}m 1}$ Proof that formalizes this intuition is where additivity of valuations comes in.

Core Idea 3: Handling Small Errors and Failures

Issue: Two-phase learning procedure gives us *approximately correct* prices *most of the time*, but we need an *exactly* BIC mechanism.

Sources of "small errors"

- Approximately correct prices ⇒ surrogates slightly over/under-demanded (instead of perfect matching = even demand)
- ② Inherent randomness in learning: small probability of getting "bad samples" ⇒ prices not even approximately correct

Solution to (1): Random dropping and dummy matching

Solution to (2): Discard other bidders upon sampling failure

Core Idea 3: Handling Small Errors and Failures

Issue: small probabilities of bad sampling \Rightarrow prices could be way off.

Solution: Discard other bidders upon sampling failure

- If detect bad sampling for bidder k, all bidders $j \neq k$ get nothing.
- Key: this preserves BIC property! because even if properties like stationarity now fail for bidder k, bidders $j \neq k$ don't care.

<u>Consequences</u>: Incurs additional welfare loss, but small-enough due to sampling failure probabilities being low-enough.

Summary

Three main ideas:

- Construct exponentially-many replicas/surrogates from polynomially-many samples by taking products
- 2 Two-phase procedure of training replicas and real replicas
- Resolve "small errors" from approximately correct prices and low-probability sampling failures
- \Rightarrow polynomial sample complexity for additive bidders over independent items.

Thank you! Questions?

- Jason D. Hartline, Robert Kleinberg, and Azarakhsh Malekian. Bayesian Incentive Compatibility via Matchings, pages 734–747.
 - Arya Maheshwari and Amanda Wang. Survey of epsilon-bic to bic reductions with sample access via bernoulli factories.

Unpublished, 2024.

Aviad Rubinstein and S. Matthew Weinberg.

Simple mechanisms for a combinatorial buyer and applications to revenue monotonicity.

CoRR, abs/1501.07637, 2015.

Core Idea 3: Handling Small Errors and Failures

- Surrogates slightly over/under-demanded
- 2 Small probabilities of bad sampling

Solution to (1): Random dropping and dummy re-matching

- (i) Randomly drop matching edges with small probability, but large enough to remove all slight overdemanding
- (ii) Add dummy edges to "fill" each surrogate to even demand
 - Preserve incentives by (a) executing this agnostically to bidder report and
 (b) discarding any allocation obtained due to dummy edges.

Solution to (2): Discard other bidders upon sampling failure

- If detect bad sampling for bidder k, all bidders $j \neq k$ get nothing.
- Key: this preserves BIC property! because even if properties like stationarity now fail for bidder k, bidders $j \neq k$ don't care.

Consequences: both incur additional welfare loss, but small enough due to

(1) low enough dropping and (2) sampling failure probabilities.