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@ Background
@ Existing procedure (Replica-Surrogate Matching)
© Key obstacles toward polynomial sample complexity

@ Three main ideas for our solution
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Background: Blackbox Reductions

This talk: welfare maximization setting.

What is a blackbox reduction?

@ Input: m bidders (with types drawn from some distribution D), n items

@ Given: some algorithm A achieving some welfare guarantee Val 4(D)

@ Goal: some incentive-compatible mechanism M that achieves a similar
welfare guarantee Val (D) to Val 4(D)

“Incentive-compatible” means Bayesian incentive compatibility (BIC):
optimal for a bidder to report truthfully assuming all other bidders do so.

Specific question: sample complexity:

Existing procedures require exp(n) samples from D. Can we achieve O(c)-welfare

apx. in poly(n, m, %) samples under structured valuations?
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Background: Notation and Model

e n items, m (independent) bidders, 1 seller

Bidder k € [m] type drawn from D) (assume supp(Dk)) C [0,1]").

e Valuations: vy : supp(D)) x {0,1}" — Rxg

Assumption 1: independent items: D) = xte[,,]Dﬁk)

Assumption 2: additive valuations: vi(tx, x) = > icp, Xi + (£)i

Expected welfare: Val 4(D) from algorithm A, Valx((D) from
mechanism M
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Main Result

Main Result: Suppose D = xke[m]D(k) is a product distribution
over m bidders with additive valuations over n independent items,
with each D(¥) satisfying a general “regularity” condition. Let A be
any algorithm achieving expected welfare Val 4 (D). Then there exists
an exactly-BIC mechanism M that achieves Valy(D) > Val 4(D) —
O(e) using at most poly(n, m, %) samples.

Extensions:
@ (Forthcoming) Removing the regularity condition
o (Easy) Generalizing additive valuations to e.g. 1-Lipschitz

e (Hope) Extend objective to revenue maximization

Note: We focus on sample complexity. No claims about runtime.
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Base Procedure: Replica-Surrogate Matching [HKM11]

@ Goal: Given input algorithm A as a blackbox, create an exactly BIC
mechanism M (with good welfare guarantee relative to A4) for
multiple bidders.

@ Plan: Turn the multi-bidder reduction problem into m separate
single-bidder reduction problems

@ Idea: Create a separate “interface layer” for each bidder that wraps
around A in a way that (a) guarantees BIC while (b) ensuring
small-enough objective (i.e. welfare) loss

Citation: Overview of replica-surrogate matching is drawn from prior survey in [MW24].
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Base Procedure: Replica-Surrogate Matching (Continued)

Interface: surrogate selection procedure, run separately for each bidder k.

e Draw some number of surrogate types from D) ()
@ Match bidder k to a surrogate that will be inputted to A in k's place.

@ How to match: by drawing make-believe replica types from D), and
then having bidder k “compete against” replicas for a surrogate.

Upshot: Competition with replicas is just a way to induce prices on
surrogate types for each bidder in such a way that:

@ makes the new mechanism (based on adding this interface) BIC
@ approximately preserves welfare.

(*): In general, might have two different distributions: distribution D for A (= surrogates from D) vs. input
distribution D’ for new mechanism (= replicas from D’).

Citation: Overview of replica-surrogate matching is drawn from prior survey in [MW24].
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Replica-Surrogate Matching: Algorithm [HKM11, RW15]

Procedure: For each bidder k, run Phase 1. Then run Phase 2.

Phase 1: Surrogate Selection
@ Sample S values from D), and call these the surrogates s € 7;5.

@ Sample S — 1 values from D); elicit k's type. Together, call these the replicas r € 7;5.

© Create a complete bipartite graph Gy on vertices Vi =rUs.
Weight vj; of the rj <+ s; edge = “r;'s value for being matched to s;"
(in expectation over other bidders' draws from D_j):

Vjj = ) E vi(ri, 0
v t_y~D [owA(SJ‘;Lk)[ k(l )]]

Q Viewing edge weights as valuations of replicas (“buyers”) for surrogates (“items”), run the
VCG mechanism over matchings, i.e. compute the maximum-weight matching and
corresponding VCG payments. Note: this will be a perfect matching (non-negative edges).

Phase 2: Surrogate Competition

@ For each bidder k, let b, denote the surrogate that was matched to the replica representing
bidder k in Gy.

@ Run A on input bid b= (by,...,by). Let 0 = (01,...,0,) = A(b) be the resulting outcome.
© Each bidder k gets o, and pays the VCG payment for getting surrogate by in Phase 1.
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Replica-Surrogate Matching: BIC Analysis

Claim (BIC): if all bidders j # k report truthtfully, then bidder k is
incentivized to report truthfully. [HKM11, RW15]

e “Stationarity”: For any j, if bidder j reports truthfully to M, then
the distribution of surrogate matched to bidder j is precisely DU).

e Justification: via Principle of Deferred Decisions
o Interpretation: adding the interface layer does not alter the distribution

@ Implication: Assuming all bidders j # k report truthfully, edge weights
correctly captures bidder k's actual value for the surrogate.

e Justification: recall that edge weights are computed in expectation over
draws of all other bidders (i.e., assuming truthful reports).

@ VCG pricing then means that it is optimal to report type truthfully.

Citation: Overview of replica-surrogate matching is drawn from prior survey in [MW24].
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Replica-Surrogate Matching: Welfare Analysis

Welfare claim (Val (D) ~ Val 4(D)): more involved. [HKM11]

ValX(D): average “value of replica for surrogate it's matched to”
Val%(D): average “value of surrogate for itself"
Main ideas:

@ If a matching were to match a large-enough fraction of replicas to
close-enough surrogate types, then it has high-enough weight to not
lose that much welfare (i.e. Valx((D) close to Val 4(D)).

@ For large enough S (# of surrogates), the expected fraction of replicas
that can be matched to close-enough surrogates is large-enough.

© The maximum-weight matching is at least this good.
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Key Tension: Exponential Cover, Polynomial Samples?

How large does S need to be?
@ Relates to an appropriate notion of size of underlying type space.

e For a type space like [0, 1]", this turns out to be exponential in n. :(

= Key tension:
@ Need exponentially many replicas/surrogates to run matching,

o Yet only want to take polynomially many samples from each D(¥) ... ?

Our main result: designing a mechanism that achieves both of these
desiderata.
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Core ldea 1: Sampling by Products

Recall our assumption on valuations: additive over independent items.

Idea: leverage independence over items:

o Recall each bidder's distribution is D) = x () D).

o Alternate way to draw samples from D(¥): draw samples S; from each
marginal ng), then construct product set S := X[ St.

Caveat: values in S are not i.i.d. samples!

Issue: including bidder report before constructing products
= bidder “influences” a fraction of replicas
= bidder could manipulate surrogate prices by misreporting
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Core Idea 2: Learning (Approximate) Surrogate Prices

Question: can we decouple learning good surrogate prices from the
bidder's report?

Idea: Two phases of replica draws:

@ Draw training replicas (via products): do not include the bidder; learn
correct prices for {training replicas}-{surrogates} matching

© Draw real replicas (via products): do include bidder, and use prices from (1)
in {real replicas}-{surrogates} matching.

Intuition: with enough samples, with high probability prices computed on

training replica set will be pretty good for the real replica set.!

Proof that formalizes this intuition is where additivity of valuations comes in.
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Core ldea 3: Handling Small Errors and Failures

Issue: Two-phase learning procedure gives us approximately correct prices
most of the time, but we need an exactly BIC mechanism.

Sources of “small errors”

© Approximately correct prices = surrogates slightly
over/under-demanded (instead of perfect matching = even demand)

@ Inherent randomness in learning: small probability of getting “bad
samples” = prices not even approximately correct

Solution to (2): Discard other bidders upon sampling failure
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Core ldea 3: Handling Small Errors and Failures

Issue: small probabilities of bad sampling = prices could be way off.

Solution : Discard other bidders upon sampling failure

o If detect bad sampling for bidder k, all bidders j # k get nothing.

@ Key: this preserves BIC property! because even if properties like
stationarity now fail for bidder k, bidders j # k don't care.

Consequences: Incurs additional welfare loss, but small-enough due to
sampling failure probabilities being low-enough.
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Three main ideas:

@ Construct exponentially-many replicas/surrogates from polynomially-many
samples by taking products

© Two-phase procedure of training replicas and real replicas

© Resolve “small errors” from approximately correct prices and low-probability
sampling failures

= polynomial sample complexity for additive bidders over independent items.

Thank you! Questions?
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Core ldea 3: Handling Small Errors and Failures

© Surrogates slightly over/under-demanded
© Small probabilities of bad sampling

Solution to (1): Random dropping and dummy re-matching

(i) Randomly drop matching edges with small probability, but large enough to
remove all slight overdemanding

(i) Add dummy edges to “fill" each surrogate to even demand
® Preserve incentives by (a) executing this agnostically to bidder report and
(b) discarding any allocation obtained due to dummy edges.
Solution to (2): Discard other bidders upon sampling failure
@ If detect bad sampling for bidder k, all bidders j # k get nothing.

@ Key: this preserves BIC property! because even if properties like stationarity
now fail for bidder k, bidders j # k don't care.

Consequences: both incur additional welfare loss, but small enough due to
(1) low enough dropping and (2) sampling failure probabilities.



