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Introduction: Quantum compilation

Current quantum computing (QC): large gap in theory vs. practice
© Noisy operations (gates) on qubits = limited number of operations
@ Qubit decoherence = limited execution time

Crucial for near-term QC: optimize circuit resources required to implement
a quantum algorithm = quantum synthesis/compilation

Various metrics of interest: ‘g&; 1
@ # qubits used (“space”) 10) T

e gate count (re: (1)) o i

@ circuit depth: number of :gi b
layers of gates (re: (2)) ) &

Gate count: 7. Circuit Depth: 3. Number of qubits: 8 (1
data qubit, 7 ancilla qubits)

Basic compilation ideas: reorder commuting blocks, gate cancellation
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Motivation: Hamiltonian simulation — parity synthesis

Problem: Hamiltonian simulation — implementing Pauli rotation sequence
@ Each Pauli rotation = compute specific parity via CNOTs + single-qubit rotation

— vk P ) .
H=X%7_,GP Pauli rotations

e—iHt = | Rp, (61)

RPz (92)

Rpk(ek): ) RP(el) I =

. L 00 Re(01) O~

[ 1]
[11]

Compilation bottleneck: CNOT gates

@ = Focus optimization on CNOT depth, i.e. on just parity computation component
of implementing Pauli rotations

Narrow problem: how to synthesize a parity network in minimal depth?

@ Parity network = CNOT circuit where all required parities appear somewhere in
the circuit. (e.g. [VMGDB22])
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Problem Statement: PARALLELPARITIES

This project: a variant of parity network synthesis:
Require that all parities be present simultaneously in the circuit.

@ Model: Assume access to ancilla qubits; want to store parities onto these ancilla

@ Motivations: new approaches to Hamiltonian simulation, "CNOT+T" circuits.

Problem: PARALLELPARITIES

Input: n data qubits x = {xi,...,xp}; p parities
{fi(x), ...., fo(x)} over the data qubits; m ancilla

Output: In minimal depth, synthesize the p parities onto ancilla
so that they are present simultaneously

Hope: leverage ancilla (more “space”) for parallelization: larger m = smaller
depth required to implement PARALLELPARITIES?

Our goal: Understand space-depth tradeoff in PARALLELPARITIES better.
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Preliminaries and Model

e Data qubits: x = {x1,x2,...,%n}, X; € Fa
@ Parity f;(x): sum of some x;'s (over 2), e.g. fj(x) = x1 ® x2  x4.
@ Ancilla qubit: “helper” qubit, starts in zero state |0).
e CNOT (controlled-NOT): 2-qubit gate:

Xi

CNOT(xi, x;) = (xi, xi ® xj)

Xj D

o Key abstraction: CNOT circuits over n qubits < linear reversible

transformations over Fy (i.e. GL,(F>).

e Reason: CNOT(x;, x;) action given by R;x for row addition matrix Rj;.

@ = constructing CNOT circuit on n qubits = “n-qubit linear reversible
circuit synthesis,” viewed as algorithmic task on Boolean matrices.
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@ Existing approach 1: minimizing ancilla (space)
@ Existing approach 2: minimizing depth

© Our approach: a controllable space-depth tradeoff
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Existing idea: minimizing ancilla

Minimal use of space: m = p ancilla (one for each parity)

Approach ([BBV'21]): isometry synthesis via BLOCK algorithm.

@ Represent parity state as
(n+ p) x n matrix. WJR /JR

@ Goal: CNOT circuit C (repr.
by matrix € anﬂ’)x(”p)) to In In
transform Ain — Aout- A,—n e Aout _ 7'(5)(;:
@ Use n-qubit linear reversible — X
synthesis routine as a blackbox 0 —f,»(x)—
input (with some depth upper 7fp('x)7

bound d(n)). - - - -

Lemma 1 (BLOCK algorithm [BBV121])

A CNOT circuit C € an+p)x("+p) such that Aoy: = CAj, can be
synthesized in depth upper bounded by d(n) + 2[log(2 + 1)].

= =7 = =
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Existing idea: minimizing depth

Key tool: logarithmic depth spreading: X0 T
@ Task: spreading some x; to some set |2> e
of k |0) wires. :0; 1

@ Naive approach: k sequential 0)
CNOTSs. Depth: k. 0 &
@ Better: tree-like spreading. Depth: 10) T

[log (k +1)]. 10

Spreads a qubit x; to k = 7 wires in depth
[log (k +1)] = 3.

Given access to m = p - n ancilla, the p parities over n data qubits in
PARALLELPARITIES can be synthesized in [log(p + 1)] + [log n] depth.

Proof: Create p registers of n ancilla each. Then, simple two-step procedure:
@ Spread each x; to each register, in parallel: log(p + 1) depth.
@ Compute jth parity over n ancilla in jth register, in parallel:_log(n) depth.
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Our approach: controllable space-depth tradeoff

So far: two ends of spectrum:

© Lemma 1: only p ancilla; depth di(n, p) := d(n) + 2[log(2 + 1)1, where d(n) =
upper bound on n-qubit linear reversible circuit depth.

@ Lemma 2 np ancilla; reduces depth to dy(n, p) := [log(p + 1)] + [log(n)].

Our contribution: framework to control space-depth tradeoff via a parameter c.

Theorem 3 (Main result: c-controlled synthesis)

The p parities defined over n qubits in PARALLELPARITIES can be synthesized
using m = c - p ancilla in depth at most

d(n,p;c)=d (g) +2 [Iog (C—: I lﬂ + [log(c)]

for any divisor ¢ of n.

Base cases: ¢ = 1,c = n: recovers Lemma 1 and 2 (up to small constant).

Key idea: split each parity into ¢ pieces and run ¢ BLOCK instances in parallel.
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@ Introduced the PARALLELPARITIES problem (a subroutine motivated
by e.g. Hamiltonian simulation)

o Compilation goal: minimize depth vs. ancilla use

o Existing optimization ideas: two extremes, no clear way to interpolate

@ Qur approach: simple framework for controlling space-depth tradeoff
via a tunable parameter c.

o Utility: Enables instance-specific allocation of space and depth costs:
practitioners can choose how much of each cost to tolerate.
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