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Abstract
We study new constructions aimed at strengthening the lower bound for the intersection of m

matroids prophet inequality. Current algorithms obtain at best O(m)-approximations while the
strongest lower bound is m 1

2
+Ω(1/ log logm), leaving the tight bound unknown. In this project, we

explore three main avenues to improve the lower bound that vary between extending the current
construction due to [KW12] and trying out entirely new starting points. Specifically, we consider (1)
close variants of the existing construction, (2) intersections of arbitrary matroids for recovering the
existing construction’s constraints, and (3) intersections of randomly constructed vector matroids.
Our main results rule out certain approaches or classes of constructions across these avenues,
pinpointing the key combinatorial substructure that drives the existing lower bound construction
while providing insight into promising avenues to consider for the future.

1. Introduction

Prophet inequalities are an intriguing class of optimal stopping problems that have yielded important
implications within computer science and economics, particularly in the context of online algorithms
and mechanism design. The basic setup of the problem is as follows. A gambler is faced with a
sequence of items [n] with values X⃗ = X1, ..., Xn revealed one at a time in some order, where
each Xi is a non-negative random variable drawn independently from a distribution Di. Given a
set system I ⊆ 2[n] of feasibility constraints, the gambler’s goal is to select a feasible set S ∈ I of
items and maximize the total value

∑
i∈S Xi of this selected set. The key is that the gambler knows

the constraints I and distributions D⃗ = {Di}i ahead of time but only learns the specific realizations
of each value Xi as they are revealed one by one, at which point the gambler must immediately and
irrevocably decide whether to select or discard that item.

Given this setup, we want to understand how well such a gambler could do in relation to a prophet
who can see all valuesXi ahead of time. Such a prophet can simply select the maximum-value feasible
set (the offline optimum) to achieve a final expected value of VP := EX⃗←D⃗[maxS∈I{

∑
i∈S Xi}].

The gambler, meanwhile, will have to use some online strategy to select some set T ∈ I that will
not necessarily be the offline optimum. Let VG := EX⃗←D⃗[

∑
i∈T Xi] denote the gambler’s expected

final value. The key question is how small the approximation ratio VP

VG
can be (for T obtained via



some optimal online strategy), termed the prophet inequality (PI) for a given instance of I and D⃗.
Observe that it will always be at least 1, since clearly VG ≤ VP . Often of interest are PIs for a given
class C of constraints, where we want to determine the best (smallest) VP

VG
ratio achievable on all

instances where I ∈ C. We refer to this optimal approximation ratio as α.

The first PI was introduced in 1978 [KS78] for the class of “single-choice" constraints, where the
gambler can only choose one item. Here [KS78] present an algorithm achieving a 2-approximation
PI (i.e. upper bounding α ≤ 2) and furthermore show that this is optimal (i.e. a tight bound of
α = 2). Subsequent investigations into PIs have motivated their study by demonstrating significant
applications, perhaps most notably to Bayesian optimal mechanism design [HKS07, CHMS10].
Meanwhile, recent work [SVW22, AA20] has revealed connections to purely mathematical questions
in combinatorics, where improved PI bounds are directly related to stronger bounds on a graph’s
product dimension.

Our work focuses on matroid prophet inequalities, in which the constraints I are based on matroids.
Matroids have become a cornerstone of combinatorial optimization since their introduction in 1935
[Whi35], and they present an interesting constraint structure under which to understand online
optimization problems like PIs. [KW12]’s pioneering study in this area demonstrated a tight
2-approximation PI when the class C is all matroids, and other work has led to asymptotically
tight bounds for various related constraint classes (e.g. k-uniform matroids [Ala11], polymatroids
[DK15]). However, an important unsolved question is the tight bound when C is the class of
constraints I defined by an intersection of m matroids. That is, I =

⋂m
j=1 Ij , such that a set is

feasible under I iff it is independent in all matroid constraints Ij . We will refer to this as the
“Int(m)” problem for convenience. The best known algorithms achieve (4m− 2)- and e(m+ 1)-
approximations (upper bounds on α) for Int(m) ([KW12, FSZ16]) and a (m+ 1)-approximation
for the intersection of m partition matroids [CCF+22]. Meanwhile, [KW12] present a construction
witnessing a Ω(

√
m) lower bound on α for Int(m), which was then improved slightly via stronger

analysis to the current best lower bound of m 1
2
+Ω(1/ log logm) [SVW22]. The gap between the O(m)

upper bounds and roughly-Ω(
√
m) lower bounds has thus resisted significant improvement for over

a decade, and the task of bridging it remains a difficult open problem.

In this study we target this problem from the lower bounds direction. Concretely, demonstrating
some lower bound Ω(f(m)) for Int(m) requires showing that there is a particular instance whose
constraints can be written as an intersection of m matroids and in which the optimal prophet-gambler
ratio α must be at least f(m) asymptotically. While we do not know whether the true tight bound
is a stronger lower or upper bound (or both), the lower bound direction specifically remains fairly
unexplored: it has not received significant attention beyond [KW12] and [SVW22], and the existing
construction (§2.2) satisfies many stronger assumptions (e.g. uses partition matroids, i.i.d Bernoulli
distributions) that need not hold in the general Int(m) problem. Thus the goal of this project is to
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more deeply explore the space of potential lower bound constructions, both by extending the current
construction and by trying out new starting points, in order to demonstrate an improved lower bound
or otherwise narrow down which approaches are promising for future studies.

1.1. Approach and Summary

We investigate three avenues of potential constructions for improving the Int(m) lower bound. In
§3 we explore close variants of the existing [KW12] construction; in §4 we consider using arbitrary
matroids to write the [KW12] construction’s constraints; and in §5 we begin exploring vector matroid
constructions from a probabilistic starting point. In each avenue, our main results are to rule out
certain types of constructions or approaches: that is, we show that they cannot yield anything stronger
than a Ω(

√
m) lower bound on α for Int(m) constraints. We then discuss important takeaways and

propose possibilities for future work in each avenue (§3.4, §4.2, §5.2).

Our three avenues can be viewed as becoming iteratively more general, in terms of the matroid
classes used (see §2.1 for more) and similarity to the specific [KW12] construction. There are
trade-offs between these levels of generality. On one hand, the [KW12] construction exhibits clear
“hardness properties” (as we will discuss in §2.2.1) that induce the desired gap between VP and
VG, so maintaining or leveraging this structure through similar constructions seems useful. On the
other hand, a more general space of constructions (e.g using more general matroid classes) has more
possibilities for a successful hard instance; indeed, expanding beyond the restricted conditions of the
[KW12] construction is one of our motivations for this lower bounds study. We thus distribute our
search across both close extensions of the existing construction in §3 and more general approaches
in §4 and §5.

Summary. We briefly summarize our specific results in informal terms. In §3.4 we consider and
rule out three variants of the base [KW12] construction, based on optimizing the specific parameters
(§3.1) and changing the structure by dropping subsets of matroids from the intersection (§3.2 and
§3.3). In §4 we rule out the utility of arbitrary matroids in the context of the [KW12] construction
by proving that partition matroids are optimal for writing these constraints. In §5 we analyze
intersections of randomly constructed vector matroids over infinite and finite fields to understand
why a probabilistic method-style argument on such constructions does not seem viable.

1.2. Related Work

As mentioned, Krengel, Sucheston, and Garling initiated the study of PIs in 1978 with a tight 2-
approximation for the single-choice PI setup. Samuel-Cahn subsequently presented an algorithm for
achieving this bound based on setting thresholds [SC84] that, albeit simple, has also been a central
idea in more recent work on matroid PIs [KW12]. Important applications to mechanism design have
been essential in motivating the study of PIs. [HKS07] first explored the correspondence between
strategyproof online mechanisms and PI algorithms, and seminal work by [CHMS10] deepened
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the link by connecting PIs with multiparameter mechanism design in the context of approximation
guarantees of sequential posted-price mechanisms.

Numerous papers have since determined bounds on matroid PIs (and their extensions) in particular,
from a tight 2-approximation algorithm for arbitrary matroids [KW12] to the same tight bound for
polymatroids [DK15], asymptotically tight bounds for uniform matroids [Ala11], and more. In terms
of the Int(m) problem, [KW12] present a (4m− 2)-approximation algorithm and a construction
witnessing a Ω(

√
m) lower bound. [FSZ16] achieve a state-of-the-art e(m + 1)-approximation,

and while no o(m) algorithm is known even under much stronger assumptions, better constant
factors have been obtained for some special cases like random order [AW18] or partition matroid
intersections [CCF+22]. On the lower bounds side, [SVW22] apply recent progress on graph product
dimensions [AA20] to better analyze the [KW12] construction and improve the lower bound to
m

1
2
+Ω(1/ log logm). We discuss [KW12] and [SVW22] in more detail in §2.2 and §2.3. Matroid

constraints have also been considered for similar online optimization questions like the secretary
problem [BIK07]. Within the matroid secretary domain, some studies have suggested the utility of
drawing on deeper matroid theory [Din13], which we believe may be worthwhile to consider for our
PI lower bounds as well.

2. Background

2.1. Matroids

We start by defining matroids and overviewing some specific classes of matroids relevant to this
study, and we in particular highlight how these classes relate to one another. For more background
on matroids and omitted proofs, see e.g. [Von17] or [Oxl11] for a comprehensive treatment.

Definition 1 A matroid M is a pair M = (E, I) of a base set E and a non-empty set family I ⊆ 2E

satisfying the following properties:
(M1) Downward-closed: if B ∈ I and A ⊆ B, then A ∈ I.
(M2) Independence augmentation: if A,B ∈ I and |B| > |A|, then ∃ j ∈ B \ A s.t. A ∪ {j} ∈ I.

Any set S ∈ I is called an independent set of matroid M = (E, I); S is a dependent set if
S /∈ I. The downward-closed property (M1) says that any subset of an independent set will also
be independent, and similarly any superset of a dependent set will also be dependent. A maximal
independent set of a matroid M is called a basis of M, while a minimal dependent set is called
a circuit of M. A simple but important fact that follows from the independence augmentation
property (M2) is that all bases of a matroid M must have the same size. This size gives the rank
r(M) of the matroid, which is defined by r(M) = maxS∈I |S|.
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We often consider matroids that arise from a particular setting or construction, which we refer to
as a class of matroids. The five classes defined below are among the most commonly considered, but
there are many other classes (e.g. transversal matroids, gammoids, regular matroids, binary/ternary
matroids) that may be of interest in future matroid PI investigations.

Definition 2 The following are five classes of matroids. For the first three, let E be an arbitrary
base set.
1. Uniform Matroids: Given E and a positive integer k, define I = {S ⊆ E : |S| ≤ k}. Then

M = (E, I) defines a matroid and is called a k-uniform matroid.
2. Partition Matroids: Let S1⊔ ...⊔Sp = E be a partition of E. Define I = {S ⊆ E : |S ∩Sk| ≤

1, ∀k ∈ [p]}. Then M = (E, I) defines a matroid and is called a partition matroid. 1

3. Laminar Matroids: A laminar family A ⊆ 2E is a set family s.t. for all A1, A2 ∈ A, either
A1 ⊆ A2, A2 ⊆ A1, or A1 ∩ A2 = ∅. Given a laminar family A and a capacity function
c : A 7→ Z≥0, let I = {S ⊆ E : |S ∩ A| ≤ c(A), ∀A ∈ A}. Then M = (E, I) defines a
matroid and is called a laminar matroid.

4. Graphic Matroids: For a graphG = (V,E), define I = {S ⊆ E : S does not contain any cycles}.
Then M = (E, I) defines a matroid and is called the cycle matroid of G. A matroid is called
graphic if it is the cycle matroid of some graph G.

5. Vector Matroids: Given a vector space V and a set of vectors E ⊆ V , define I = {S ⊆ E :

S is linearly independent in V }. Then M = (E, I) defines a matroid and is called a vector
matroid.

A natural question that arises is whether these classes of matroids are related in any way. Indeed,
we show in Fact 1 that some of the above classes are special cases of others, that is, when any matroid
from some class A can be equivalently expressed and represented as a matroid from another class B.
In this case we say that class B generalizes class A.

Fact 1 The classes of graphic matroids and laminar matroids both generalize partition matroids.
Vector matroids generalize both graphic and laminar matroids. [Oxl11]

The proof of Fact 1 below is constructive in the sense that we show that a class B generalizes a
class A by explicitly showing how an arbitrary matroid M from class A can be represented with a
construction from class B. These constructions are useful for translating between different viewpoints
of a particular matroid, for instance in §5.2 where we express a partition matroid as a vector matroid
as a basis for future work. Furthermore, as we have mentioned, the order of generality between
matroid classes also informs our search for an improved Int(m) lower bound construction. The

1A more general view of partition matroids associates capacities c1, ..., cp with each partite set S1, . . . , Sp and
instead defines I = {S ⊆ E : |S ∩ Sk| ≤ ck, ∀k ∈ [p]}.
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existing construction (discussed in §2.2) uses partition matroids; Fact 1 tells us this is a relatively
restricted class of matroids, while in general a hard instance for Int(m) could involve arbitrary
matroids. Given the trade-offs discussed in §1.1, our avenues of investigation cover matroids of
varying generality, from continuing with partition matroids in §3 to considering vector and arbitrary
matroid intersections in §5 and §4 respectively.

Proof of Fact 1: Consider an arbitrary partition matroid M = (E, I) defined by partition
S1 ⊔ ... ⊔ Sk = E. To prove the first statement, we will show how the same M can be recovered as
(1) the laminar matroid obtained from some laminar family A and capacity function c( · ), and (2) a
graphic matroid, i.e. the cycle matroid of some graph G.

(1) Simply notice that the partition A = {Si : i ∈ [k]} itself is in fact a laminar family, since
Si∩Sj = ∅ for i ̸= j. Then defining our capacity function c( · ) to be given by c(A) = 1,∀A ∈ A, it
is easy to see that the laminar matroid on E defined by A and c( · ) exactly recovers the independent
sets I of our partition matroid.

(2) Consider a simple path graph with k edges, and then turn each edge i of the k total edges
into a multi-edge of size |Si|, i.e. |Si| parallel edges. Observe that this yields a graph G with |E|
edges, and we can map each element e ∈ E into a distinct edge of G s.t. each partite set Si ⊆ E of
elements corresponds to one multi-edge. Now, observe that a set S of edges of G is acyclic iff it
does not contain any two parallel edges, i.e. if |S ∩ Si| ≤ 1 for all i ∈ [k]. It follows that the cycle
matroid of G exactly recovers our partition matroid M.

For the second statement, we omit the proof that vector matroids generalize laminar matroids;
details can be found in [Fin11, Oxl11]. A graphic matroid M, defined by some graph G = (V,E),
can be expressed as the vector matroid of the column set of the vertex-edge incidence matrix of (a
directed version of) G. The proof of this is deferred to Appendix A.

2.2. The [KW12] Construction

We now review the original [KW12] lower bound construction, which given a parameter p yields an
instance with VP

VG
= Ω(p) as an intersection of p2 matroids. Viewing m := p2, overall this yields an

Ω(
√
m) lower bound on α for the Int(m) problem. We will assume without loss of generality that

p is a prime below and henceforth where applicable (in the case that it is not, we can equivalently
work with a prime chosen between p

2
and p and obtain the same asymptotic results).

Setup. Consider a set E of pp+1 items viewed as the elements of a grid with r = pp rows and
c = p columns. The value Xe of each element e ∈ E is Xe

iid∼ Bern(1
p
). In general each element is

specified by its row x and column y, and hence we will identify elements as (x, y) for 0 ≤ x ≤ pp−1,
0 ≤ y ≤ p − 1. However, we will consider the row value x base-p and hence view the row as a
sequence of digits x⃗ = (x0, ..., xp−1) where 0 ≤ xi ≤ p−1 for each 0 ≤ i ≤ p−1, since x ≤ pp−1.
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Constraints. Define p2 matroids as follows: for each 0 ≤ i, j ≤ p− 1, let Mi,j be the partition
matroid defined by the partition E =

⊔
k S

i,j
k for 0 ≤ k ≤ p− 1, with partite sets Si,j

k := {(x⃗, y) :
xi · j+y ≡ k (mod p)}. This defines p2 matroids since there are p choices for both i and j. We now
have the following intersection of matroids constraints: I = {S ⊆ E : |S ∩ Si,j

k | ≤ 1, for all 0 ≤
i, j, k ≤ p − 1}. We claim that the resulting feasible sets are exactly any set of elements that all
belong to the same row, stated precisely below.

Proposition 2 Consider the matroid intersection constraints I := {S ⊆ E : |S ∩ Si,j
k | ≤

1, for all 0 ≤ i, j, k ≤ p − 1} as defined above with partite sets Si,j
k := {(x⃗, y) : xi · j + y ≡ k

(mod p)}. Then I = {S ⊆ E : ∀(x⃗1, y1), (x⃗2, y2) ∈ S, x⃗1 = x⃗2}. That is, the definition of I is
equivalent to defining the feasible sets to be any row or subset of a row.

Proof: Define I := {S ⊆ E : |S ∩ Si,j
k | ≤ 1, for all 0 ≤ i, j, k ≤ p − 1} as in the

statement. First we show that a subset of a row is always feasible, that is, for S ⊆ E s.t.
∀(x⃗1, y1), (x⃗2, y2) ∈ S, x⃗1 = x⃗2, S ∈ I. In particular we show that for any two distinct
elements (x⃗, y1), (x⃗, y2) in the same row , ∄ a partite set Si,j

k s.t. (x⃗, y1) and (x⃗, y2) are both
in Si,j

k . This is because for any 0 ≤ i, j ≤ p− 1, we have xi · j + y1 ̸= xi · j + y2 (mod p),
since 0 ≤ y1, y2 ≤ p− 1 and y1 ̸= y2 given that the elements to be distinct.

Now observe that it suffices to show that any two elements (x⃗1, y1), (x⃗2, y2) in different
rows (i.e. x⃗1 ̸= x⃗2) are dependent in some matroid. We have x⃗1 ̸= x⃗2 ⇒ ∃ 0 ≤ i ≤
p−1 s.t. x1i ̸= x2i. Then the key is that there exists 0 ≤ j ≤ p−1 s.t. x1i · j+y1 = x2i · j+y2

(mod p). This follows since x1i − x2i ̸= 0 and so there is a solution 0 ≤ j ≤ p − 1 to
(x1i − x2i)j = (y2 − y1) mod p by inverting (x1i − x2i) in the field Fp (prime p). Thus
letting k := x1i · j + y1 mod p, it follows that both (x⃗1, y1), (x⃗1, y1) ∈ Si,j

k . Thus both
elements are dependent in matroid Mi,j .

Value analysis. The analysis for VP and VG from [KW12] is repeated here, using the row-
characterization of feasible sets from Proposition 2. The upshot is that VP = Θ(p) while V (G) =

Θ(1), so VP

VG
= Θ(p). Thus viewing m = p2, this yields a Ω(

√
m) lower bound for Int(m).

Terminology: We will often work with Bernoulli (0-1) random variable distributions for item
values in the constructions we consider. We refer to value-1 items as active, following terminology
from prior work for items with value above a threshold [FSZ16].

Prophet: For the prophet, since any particular row is all active with probability (1
p
)c, there will

be some active row (i.e. total value c) with probability 1− (1− 1
pc
)r = 1− (1− 1

pp
)p

p ≥ (1− 1
e
).

Thus VP ≥ c · (1− 1
e
) = (1− 1

e
)p. We also know VP ≤ p since the maximum feasible set size is

c = p, so VP = Θ(p).

Gambler: As soon as the gambler accepts any element, they can only select elements from the
same row. There are up to c− 1 = p− 1 remaining elements, which are i.i.d Bern(1

p
), in the row, so
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the expected value from remaining elements is p−1
p

. Hence VG ≤ 1 + p−1
p

≤ 2, where the 1 comes
from the selection of the first element (that locks the gambler in to a particular row). Meanwhile
certainly VG = Ω(1), since with at least constant probability there will be an active element in the
whole grid. Thus VG = Θ(1) as desired.

2.2.1. Hardness Principles. Here we highlight some of the broader principles and properties that
make this construction a successful hard instance. A key consequence of the grid constraint structure
is that the gambler is “locked in” to a particular maximal feasible set (a row) as soon as she selects
an item. Indeed, the disjointness between these maximal feasible sets is essential to limiting VG,
as we wish to do when demonstrating a lower bound. Intuitively, it strongly restricts the gambler’s
optionality: she must immediately decide which single row to pursue, while the prophet can see
the outcome of each row before picking one. In general, to limit VG in a construction we might
aim to ensure that a large fraction of remaining feasible items gets blocked each time the gambler
selects a new item. The existing construction excels in this regard, with only a 1

pp
-fraction of items

not blocked after the gambler’s first selection itself. We also note that the structure of blocking any
different-row pair of items in this construction is one instance of what we can more generally view
as sufficient conditions for asymptotically separating VP and VG, which we will delve further into in
§4.2. The downside of such strong restrictions is that we do need many feasible sets and expected
active elements to ensure that VP is high, and then the challenge becomes writing the constraints as a
minimal intersection of matroids. Overall, however, the construction’s structure induces a separation
between VP and VG as desired, so these properties are useful to keep in mind as guiding principles
while searching for new lower bound constructions.

2.3. Graph Formulation and Lower Bound Improvements in [SVW22]

Recent work of [SVW22] improves the Int(m) lower bound to m
1
2
+Ω(1/ log logm) through a stronger

combinatorial analysis of the same construction introduced by [KW12]. Specifically, they show that
the same constraints I can be written as an intersection of asymptotically fewer partition matroids
through a connection to the product dimension (PD) of a graph and then leveraging recent progress on
PD bounds [AA20]. We briefly overview [SVW22]’s graph formulation of the [KW12] construction
and the basics idea for the analysis via PD bounds.

Let Q(c, r) denote the graph of r disjoint cliques of size c. We can view the [KW12] construction
setup, again parameterized by p, in terms of Q(p, pp) as follows. The pp+1 elements are the vertices,
where each row corresponds to one of the pp disjoint p-cliques, and then the desired constraints
I are exactly defined by any clique in the graph being feasible. Using this graph formulation, the
key observation of [AA20, SVW22] is that the minimum number of partition matroids that need
to be intersected to write I is exactly the product dimension of Q(p, pp), denoted PD(Q(p, pp)),
where the product dimension is defined as the minimum number of proper vertex colorings such that
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every pair of non-adjacent vertices are colored the same in some coloring.2 The simple canonical
procedure from [KW12] for constructing these partition matroids (described above) thus witnesses
an upper bound of p2 for PD(Q(p, pp). Using an advanced combinatorial argument based on the idea
of finding large covering families of vectors, the authors of [AA20] prove an improved upper bound
on PD(Q(c, r)) in the regime where r > cc

5 lg lg c ≫ cc. Unfortunately the parameters of Q(p, pp) do
not fall in this regime, but what [SVW22] show is precisely how to adapt the [AA20] argument to
obtain a weaker but still overall improved result for this case where r = cc. Specifically, they obtain
a p2−Ω(1/ log log p) upper bound for PD(Q(p, pp)). Then, since the [KW12] construction achieves
VP

VG
= Ω(p) with this many partition matroids, by inversion this implies the claimed m

1
2
+Ω(1/ log logm)

lower bound for the Int(m) problem.

3. [KW12] Construction Variants

While the [KW12] construction features many desirable properties (§2.2.1) for inducing a separation
between the prophet and gambler values, it is not clear a priori that the specific parameters and
details of the construction are necessarily optimal. That is, it may be possible to obtain a better
lower bound through small variations on the base structure of the existing construction. In this first
avenue of investigation, we consider three such natural variants (§3.1, §3.2, §3.3) and show why
they do not improve on the existing Ω(

√
m) lower bound for the Int(m) problem.

3.1. General Grid(r, c, q) Construction and Analysis

Our first variant generalizes the specific parameters of the existing lower bound construction. In
particular, the grid-based structure of the [KW12] construction can be defined more generally as a
function of three parameters: (1) the number of rows r, (2) the number of columns c, and (3) the
success probability q such that each element e (of the r · c total elements) has value Xe

iid∼ Bern(q).
The feasible sets are still to be exactly any row of elements (or subset of a row), though we will
need to show how to write these constraints as an intersection of matroids for arbitrary (r, c) values
(note that q is not relevant to the feasibility constraints). We refer to this parameterized setup as the
Grid(r, c, q) construction and to the corresponding constraints as I(r, c), abbreviated to I when
context is clear. The [KW12] construction is thus Grid(pp, p, 1

p
).

In this section we ask the following question: are there values of (r, c, q) for which the corresponding
Grid(r, c, q) construction yields an improved lower bound? Our main result, stated formally via

2The idea is to define a partition matroid Mk for each coloring k with each color defining a partite set; the PD
definition then guarantees that any non-adjacent vertices will be colored the same (i.e. be dependent) in some coloring
(i.e. some partition matroid), thus recovering the clique-based constraints I in the intersection overall.
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Principle 3 and Theorem 4 below, is that the answer is no, assuming we write the I(r, c) constraints
analogously to the canonical procedure from [KW12].

Principle 3 To write the feasibility constraints I(r, c) of a Grid(r, c, q) construction as an intersection
of matroids, we only consider the canonical procedure using partition matroids and modular
arithmetic from [KW12] (discussed in §2.2 and §3.1.1).

Theorem 4 Assuming that constraints are written according to Principle 3, there do not exist
parameter values (r, c, q) for which the Grid(r, c, q) construction yields an improvement over the
Ω(

√
m) lower bound on α for the Int(m) problem.

Why it is reasonable to make an assumption like Principle 3 in our analysis? First, relaxing the
assumption of using partition matroids is the subject of §4.1, where we show that indeed one cannot
do better with arbitrary matroids, i.e. partition matroids are optimal for writing I(r, c) constraints.
Then, generalizing the ideas in §2.3 to the case of arbitrary (r, c) tells us that the minimum number
of partition matroids needed to write I(r, c) is exactly the product dimension of r disjoint c-cliques,
denoted PD(Q(c, r)). While recent work in [AA20] improves PD(Q(c, r)) beyond what is obtained
from our canonical procedure in some cases, the improvement only applies to regimes that have far
too many rows relative to columns and in turn already require too many matroids for our purposes,
for any (r, c, q).3 [SVW22] do adapt the techniques of [AA20] to obtain (weaker) improvements in
applicable regimes, in particular showing how I(pp, p) can be written in p2−Ω(1/ log log p) instead of
the p2 partition matroids obtained by the canonical procedure. However, quantitatively this is only
a minor (sub-polynomial) improvement, and hence the canonical procedure remains the best we
can do up to such lower order terms. Thus the only other option would be to directly improve the
product dimension of Q(c, r) further. Given the involved nature of the current results due to leading
combinatorists [AA20], this would be a very challenging combinatorial problem, which is not the
focus of this project, so we proceed with the tools available to us.

3.1.1. Writing I(r, c) as a partition matroid intersection. Here we show that the canonical
procedure for writing Grid constraints, generalized to the case of arbitrary (r, c), yields I(r, c) as
an intersection of m := c · logc(r) partition matroids. We re-parameterize an arbitrary Grid(r, c, q)
construction in terms of a base parameter p for the remainder of this section. Specifically, write
q = 1

p
, c = pa(p), and r = pb(p), which we can do WLOG by defining p based on q, and then setting

a(p) = logp c and b(p) = logp r. Hence we want an intersection of m := c · logc(r) = pa(p) · b(p)
a(p)

partition matroids.4 Interpreting this parametrization under the desired constraints on probability
3Specifically, the limited regime in which [AA20] bounds apply translates to always requiring a minimum of

m := c1+5 lg log c matroids. But we can show that VP

VG
= O(c) since the maximum feasible set size in Grid(r, c, q) is c,

while m ≫ c2, so this does not help us.
4We disregard integrality issues: one can take ceilings of terms like logr(c) to be fully rigorous.
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and the number of rows/columns (i.e. q ≤ 1; r and c should be larger-than-constant integers) gives
us bounds of p ≥ 1 and a(p), b(p) = ω(1/ log p). Note that to prove an asymptotic lower bound,
we want to consider our construction asymptotically in the number of matroids m, but one can
check with the above bounds that it is equivalent to consider asymptotics with respect to p (as we
sometimes do in derivations).

The argument is analogous to the proof of Proposition 2. As before, we identify each element e ∈ E

by its row and column (x, y) s.t. 0 ≤ x ≤ r − 1, 0 ≤ y ≤ c− 1. We want constraints I = I(r, c)
such that a set S belongs to I iff it is a row or subset of a row, i.e. ∀(xa, ya), (xb, yb) ∈ S, xa = xb.
The canonical procedure that we follow is to now define a partition matroid Mi,j for each i, j in a
range that is to be determined, where the partition to which an element (x, y) belongs is determined
by xi · j + y, working modulo some value P to be determined. For elements in the same row x

to independent in any matroid, we can observe that we should work mod P := c = pa(p), so that
ya ̸= yb ⇒ ya ̸≡ yb (mod P ). Note that we again assume that P is a prime here, as in §2.2.

As such, define P := pa(p), imax := logP pb(p) = b(p)
a(p)

, and now write each element’s row x with
base P digits, as x⃗ = (x0, ..., ximax−1). Then define Mi,j for 0 ≤ j ≤ P−1, 0 ≤ i ≤ imax−1 as the
partition matroid for partite sets Si,j

k := {(x⃗, y) : xi · j + y ≡ k (mod P )}, for all 0 ≤ k ≤ P − 1.
In words, j ranges across the number of columns, and i across the number of digits needed base-c
to write r. The same analysis from §2.2 shows that the intersection of these matroids recovers
the desired constraints I(pb(p), pa(p)). Specifically, any set of elements in the same row will be
independent under all matroids; while whenever there are two elements (x⃗a, ya) and (x⃗b, yb) such
that x⃗a ̸= x⃗b, there must be some index 0 ≤ i ≤ imax − 1 s.t. xa,i ̸= xb,i (mod P ), and so
∃ 0 ≤ j ≤ P − 1 s.t. xa,i · j + ya = xb,i · j + yb (mod P ). Therefore any set of elements with
elements from more than one row will be dependent in some matroid, as desired. Thus we conclude
that the constraints I(pb(p), pa(p)) can be written as an intersection of P · imax = pa(p) · b(p)

a(p)
matroids.

3.1.2. Grid(r, c, q) Value Analysis. We now continue on to analyzing the prophet and gambler
values in order to upper bound VP

VG
and, when combined with the derived number of matroids, thereby

prove Theorem 4. We begin with the following useful fact that provides a tight characterization of
the prophet value VP assuming we know that VP = Ω(1).

Fact 5 Consider a Grid(r, c, q) construction, and suppose VP = Ω(1) is known. Let T be the
largest value up to c such that a particular row has total value at least T with probability Ω(1

r
).

Then VP = Θ(T ).

The proof of Fact 5 is deferred to Appendix B. Note that the total value of any particular row
in Grid(r, c, q) is given by a Bin(c, q) random variable. Thus notice that the [KW12] prophet
value analysis is an instance of this fact for their Grid(pp, p, 1

p
) construction, where VP = Θ(T ) for

T = c = p since a given row is all 1’s with probability (1
p
)c = 1

pp
= 1

r
.
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Proof of Theorem 4:
Consider an arbitrary Grid(pb(p), pa(p), 1

p
) construction, whose constraints I we have shown can be

written as an intersection of pa(p) · b(p)
a(p)

matroids.

Case 1: We separately handle the edge case where VG = o(1). Let A denote the event that there
exists an active element in an instance of this Grid, and let NA be a random variable denoting
the number of active elements. We claim that VG = o(1) implies E[NA] ≤ 1

2
, and then we can

bound VG ≥ Pr [A] ≥ E[NA] · (1− E[NA]) ≥ E[NA]/2 ≥ VP/2. The brief proof of these claims is
deferred to Appendix C. The upshot is that VG ≥ VP

2
, in particular VP

VG
= Θ(1). Since the gambler

achieves a constant-factor approximation of the prophet, this case clearly cannot yield an improved
lower bound.

Case 2: Otherwise, we analyze VG and VP as follows.

(I) Gambler value VG. In this case we know VG = Ω(1). We claim that furthermore VG =

Ω(1 + pa(p)−1). To see why, observe that the gambler could with probability 1
2

either (a) use the
strategy that yields Ω(1) or (b) select a row x⃗ and pick all elements from x⃗, which in expectation
yields c · q = pa(p)−1. Thus indeed VG = Ω(1

2
(1 + pa(p)−1)) = Ω(1 + pa(p)−1). In fact, we can

conclude VG = Θ(1+pa(p)−1) by analogous reasoning to [KW12]’s analysis of VG in Grid(pp, p, 1
p
).

Specifically, as soon as the gambler selects an element, she is locked in to a single row of c = pa(p)

elements that are i.i.d Bern(1
p
), and thus VG ≤ 1 + pa(p)−1

p
≤ 1 + pa(p)−1.

(II) Prophet value VP : Since VG = Ω(1) ⇒ VP = Ω(1), we are in the regime where Fact 5
applies. So, since each row is a Bin(pa(p), 1

p
) random variable, we have that VP = Θ(T ), where T

is the largest value up to c = pa(p) such that Pr
[
Bin(pa(p), 1

p
) ≥ T

]
= Ω(r) = Ω(pb(p)). To upper

bound the resulting prophet-gambler ratio, we want to determine or upper bound the value of T .

Case 2A: b(p) ≥ pa(p). Intuitively, this case corresponds to there being sufficiently many rows
that T will be set to c according to Fact 5. Formally, Pr [Bin(c, q) ≥ c] = Pr [Bin(c, q) = c] =

(1
p
)p

a(p) ≥ (1
p
)b(p) = 1

r
, soT = c = pa(p). HenceVP = Θ(pa(p)). Then the ratio VP

VG
= Θ( pa(p)

1+pa(p)−1 ) =

Θ(pmin{1,a(p)}). Notice that this does not involve b(p), so to determine the best bound that we can
obtain, we should minimize the pa(p) · b(p)

a(p)
number of matroids by minimizing b(p) in this case.

Hence we pick b(p) = pa(p) and obtain a Θ(pmin{1,a(p)}) ratio with p2 · a(p)
a(p)

matroids.

There are two brief sub-cases. First, for a(p) ≥ 1, the number of matroids p2 · a(p)
a(p)

is increasing in
a(p), while the ratio Θ(pmin{1,a(p)}) = Θ(p) is fixed over a(p). Hence in the regime of a(p) ≥ 1, it is
optimal to pick the smallest a(p) to minimize the number of matroids. Choosing a(p) = 1 yields p2

matroids with ratio Θ(p), implying that the best lower bound for the Int(m) problem we can claim
from this case is Ω(

√
m). Otherwise, in the a(p) < 1 regime, the ratio is Θ(pmin{1,a(p)}) = Θ(pa(p)).

Then notice that letting m := p2 · a(p)
a(p)

denote the number of matroids, we have
√
m = pa(p)√

a(p)
> pa(p),

12



so the VP

VG
ratio must be O(

√
m), ruling this case out too.

Case 2B: b(p) < pa(p). This case corresponds to there being relatively fewer rows. Specifically, T
as defined per Fact 5 may no longer set to c as before. We instead handle this case by considering
what minimum value of T ′ (up to constants) the prophet would need to achieve to obtain a square-
root bound overall. Since there are m := pa(p) · b(p)

a(p)
matroids and VG = Θ(1 + pa(p)−1), we let

T ′ = (1 + pa(p)−1)
√
m = (1 + pa(p)−1)

√
pa(p) · b(p)

a(p)
.

According to the definition of T , there exists a constant k such that Pr
[
Bin(pa(p), 1

p
) ≥ T

]
≥ k

r

asymptotically. To show that this case does not yield improved bounds and thus complete the
proof, we observe that it suffices to show that Pr

[
Bin(pa(p), 1

p
) ≥ T ′

]
≤ k

r
= k

pb(p)
(⋆). This is

because then Pr
[
Bin(pa(p), 1

p
) ≥ T ′

]
≤ k

r
≤ Pr [Bin(c, q) ≥ T ], which implies T ≤ T ′ since

Pr
[
Bin(pa(p), 1

p
) ≥ x

]
is decreasing in x. Hence we conclude VP = Θ(T ) = O(T ′) ⇒ VP

VG
=

O( T ′

1+pa(p)−1 ) = O(
√
m) as desired. The proof of (⋆) is based on a Chernoff bound from Fact 16 and

is deferred to Appendix C.

3.2. Ruled Out: Shaving Matroids in i Dimension

With parameter optimization of Grid(r, c, q) ruled out, we now consider variants aimed at modifying
the Grid structure in a way that preserves the hardness properties of the construction while decreasing
the number of matroids used. For instance, a modified construction that uses only e.g. p2−ε while
preserving the VP

VG
= Ω(p) gap would by inversion improve the lower bound for Int(m) to m

1
2
+Ω(ε).

A natural first idea to this end is to understand what happens to the Grid structure (in particular,
the VP

VG
ratio) if we simply drop some matroids from the intersection constraints. In particular, how

does the construction change if we start with the Grid(pp, p, 1
p
) structure and then remove some of

the matroids {Mi,j}0≤i,j<p by “shaving off” some set of the indices? In this section we consider
such a “matroid shaving” along the i index dimension: given the same set of elements, we now
define constraints by the intersection of matroids Mi,j only over all i ∈ T ⊊ {0, ..., p − 1} and
all j ∈ {0, ..., p − 1}, i.e. shaving off the i indices {0, ..., p − 1} \ T . We will show that for any
(non-empty) T ⊊ {0, ..., p− 1}, such a shaving implies that VP

VG
= Θ(1) (Theorem 6); with such a

constant-factor approximation, we conclude that this variant cannot yield an improved Int(m) lower
bound.

Theorem 6 Consider the Grid(pp, p, 1
p
) construction modified such that constraints are defined

by the intersection of matroids Mi,j only for i ∈ T for some non-empty T ⊊ {0, ..., p − 1} and
0 ≤ j ≤ p− 1. Then VP = Θ(p), V (G) = Θ(p), and hence VP

VG
= Θ(1).

Writing T = {i1, i2, . . . , it} s.t. t = |T | < p, the key idea is that such a shaving induces
a row grouping where the pp+1 elements, normally divided in pp rows with p elements each,
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are now divided into pt row groups of pp−t+1 elements each.5 Specifically, for an element e =

(x⃗, y) = (x0, ..., xp−1, y) specified with base-p digits, the row group of e is determined by xT =

(xi1 , xi2 , . . . , xit). In particular, the new feasible sets will now be the subsets of row groups, rather
than just rows, but with the additional constraint that the columns of the elements are distinct, as the
next lemma states.

Lemma 7 Define I based on the intersection of matroids Mi,j , each as defined for Grid(pp, p, 1
p
),

but only over all i ∈ T , 0 ≤ j ≤ p − 1. Then I = {S ⊆ E : ∀(x⃗a, ya), (x⃗b, yb) ∈ S, xa,T =

xb,T and ya ̸= yb}.

The proof of this lemma is largely analogous to that of Proposition 2 and hence is deferred to
Appendix C. We now analyze the prophet and gambler values to complete the proof of the theorem.

Proof of Theorem 6:
(I) Prophet value VP . We claim that VP is still Θ(p). Since we have only removed matroids (i.e.

made strictly more subsets feasible), certainly the prophet value is at least as good as in the original
Grid(pp, p, 1

p
) construction. The key is that by Lemma 7, the elements of any S ∈ I must all be in

distinct columns, so since there are c = p columns, it follows that |S| ≤ p ⇒ VP ≤ p.

(II) Gambler value VG. The gambler now does much better: after accepting the first element, the
gambler is only locked into a given row group, rather than a row. Each row group has pp−t+1 elements,
with pp−t elements in each of the p columns. Fix an arbitrary row group, and for each column j define
an indicator variable Zj that is 1 iff any of the pp−t elements in column j in that row group is active
(value-1). Then Pr [Zj = 1] = 1−Pr [Zj = 0] = 1−(1− 1

p
)p

p−t ≥ 1−(1
e
)p

p−t−1 . Now observe that
Zj is exactly the value that the gambler can get from column j if the gambler is selecting from this
particular row group, and so it follows that VG ≥

∑p−1
j=0 E[Zj] ≥ (1− (1

e
)p

p−t−1
) · p = Ω(p) since

(1− (1
e
)p

p−t−1
) ≥ (1− 1

e
) when t < p. Then since the maximum feasible set size is p, VG = Θ(p).

Hence we conclude that VP

VG
= Θ(1).

Equivalence. From this analysis we can observe the following equivalence of the new structure.
We can view a row group as having p “types” (i.e. columns) of elements, now with pp−t copies per
type (instead of each row having 1 copy per type), where for each row group what we now care
about is precisely the random variable Zj defined in the gambler analysis. But the Zj variables (for
0 ≤ j ≤ p − 1) for each row group are just i.i.d Bernoulli variables—like the original element
values Xe

iid∼ Bern(q), but with a different success probability. In particular, this means the new
structure is equivalent to the standard grid construction with pt rows, p columns, and element success
probability equal to Pr [Zj = 1]. This is stated precisely in Proposition 8.

5As a sanity check, note that the case of T = {0, ..., p− 1}, i.e. t = p, means not removing any matroids, and then
we recover the original Grid(pp, p, 1

p ) construction as expected: the row groups are just the rows.
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Proposition 8 Consider the Grid(pp, p, 1
p
) construction modified so that constraints are defined

by the intersection of matroids Mi,j only for i ∈ T ⊊ {0, ..., p − 1}, 0 ≤ j ≤ p − 1. Then
the modified structure is equivalent to Grid(r̂, ĉ, q̂) with I = I(r̂, ĉ), where ĉ = p, r̂ = pt, and
q̂ = 1− (1− 1

p
)p

p−t .

With this equivalent formulation, we can appeal to Theorem 4 as a more general reason for why
shaving matroids in the i dimension won’t improve the lower bound beyond Ω(

√
m) — though for

these particular parameters, the specific constant-factor approximation can be deduced directly as
shown in this section.

3.3. Ruled Out: Shaving Matroids in j Dimension

We now turn to our final variant, in which we consider the natural follow-up question of whether
shaving off matroids along the j dimension can yield improvements, if shaving along the i dimension
does not. Specifically, how does the Grid(pp, p, 1

p
) construction structure (in particular, the VP

VG

ratio) change if we consider the intersection of matroids Mi,j for all i ∈ {0, ..., p − 1} but only
j ∈ T ⊊ {0, ..., p− 1}, i.e. shaving off the j indices {0, ..., p− 1} \ T ?

The changes to the constraint structure are harder to characterize than in the i shaving case,
where Lemma 7 pins down the feasibility constraints and Proposition 8 provides an equivalent
characterization of the overall modification. Indeed, the two indices i and j are far from symmetric
in the definition of our matroid intersection structure. Now, for instance, two elements ea =

(x⃗a, ya), eb = (x⃗a, ya) in different rows become feasible so long as for all i, the ji that satisfies
(xa,i − xb,i) · ji = yb − ya (mod p) is not in the set T . For arbitrary T and larger sets S of elements,
this structure becomes increasingly complex. Instead of trying to directly characterize this structure,
we will use a union bound argument to show that shaving matroids in this way again cannot improve
the existing Int(m) lower bound, stated precisely below.

Theorem 9 Consider the Grid(pp, p, 1
p
) construction modified such that constraints are defined

by the intersection of matroids Mi,j only for 0 ≤ i ≤ p − 1 and j ∈ T for some non-empty
T ⊆ {0, ..., p− 1}. Then VG = Ω( p

|T |), which implies at best a Ω(
√
m) bound for Int(m).

Before stating the proof of Theorem 9, we first observe a simple but useful fact on the maximum
feasible set size in any setup with a partition matroid Mi,j of the form we have been considering.

Fact 10 Consider a construction with constraints I defined by the intersection of a positive number
of Mi,j matroids, where Mi,j is defined as before by a partition E =

⊔
k S

i,j
k for 0 ≤ k ≤ p− 1.

Then for any S ∈ I, |S| ≤ p: that is, the maximum feasible set size is p.
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The proof of Fact 10 simply follows from the fact that any Mi,j is a partition matroid defined
by p partite sets S0, ..., Sp−1, so by the Pigeonhole Principle, a set of size greater than p must have
intersection larger than 1 with some partite set and thus cannot be independent in Mi,j .

We are now ready to prove the main theorem.

Proof of Theorem 9:
Consider arbitrary non-empty T ⊆ {0, ..., p − 1} as the set of indices still present in the j

dimension; the number of matroids is thus p · |T |. Since we are just removing matroids, VP will
be at least as large as in the standard Grid(pp, p, 1

p
) construction; combined with Fact 10, we have

VP = Θ(p).

For the gambler, we consider a strategy of only trying to select feasible elements from distinct
columns. That is, for a currently selected gambler set S = {(x⃗1, y1), ..., (x⃗s, ys)} where we
inductively assume the columns Sy := {y1, . . . , ys} are all distinct, we will only try to add elements
(x⃗, y) from a column y /∈ Sy. We will use a union bound argument to show the sufficient claim (⋆)

that for any currently selected set S = {(x⃗1, y1), ..., (x⃗s, ys)} such that |S| = s < p−2
|T | , then for any

new column y /∈ Sy, there are at least 2p elements, i.e. rows x⃗, s.t. it is feasible to add (x⃗, y) to S.

Let us first understand why claim (⋆) will be sufficient. First, given that Grid element values are
i.i.d Bern(1

p
) random variables, note that we will always assume the gambler only tries to select

active elements: it is clearly always worthless to select a value-0 element. Claim (⋆) implies that
when the gambler has so far selected set S of some size s < p−2

|T | , then focusing on a specific new
column y /∈ Sy, the probability that there are no active elements (x⃗, y) to feasibly extend S with is
at most (1− 1

p
)2

p ≤ (1
e
)
2p

p . Let us denote such a “failure event” at the stage where the gambler set

S has size s as the event Fs, so Pr [Fs] ≤ (1
e
)
2p

p . Observe that if Fs does not happen, the gambler
can extend the set S to a set (of active elements) of size s + 1 (for any s < p−2

|T | ). In particular,
putting these extensions together, this means that overall the gambler can obtain a final set S of
size p−2

|T | in the event ¬(
⋃ p−2

|T | −1
i=1 Fi) that no failures occur. Applying a union bound, this occurs with

probability at least 1−
∑ p−2

|T | −1
i=1 Pr [Fi] ≥ 1− (p−2|T | ) · (1

e
)
2p

p ≥ 1− (1
e
)
2p

p
−ln(p) ≥ 1− 1

e
. This result

is sufficient because it implies VG ≥ (1 − 1
e
) · p−2
|T | = Ω( p

|T |), and thus VP

VG
= O( p

p/|T |) = O(|T |).
We have m := p · |T | matroids; since |T | ≤

√
p · |T |, it follows that VP

VG
= O(

√
m), and the overall

claim follows.

Thus it just remains to prove claim (⋆). Suppose the gambler has acceptedS = {(x⃗1, y1), ..., (x⃗s, ys)}
such that |S| = s < p−2

|T | as above, and we want to determine how many elements (x⃗, y) are feasible
to add to S from a particular column y /∈ Sy. For any a ∈ [s], (x⃗, y) is dependent with (x⃗a, ya) if for
any i, (xa,i−xi) · j ≡ (y−ya) (mod p) ⇔ xi ≡ xa,i− j−1(y−ya) (mod p) for some j ∈ T \{0},
recalling that y− ya ̸= 0. Defining the set Ta,i := {xa,i − j−1(y− ya) (mod p) : j ∈ T \ {0}}, we
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can write that (x⃗, y) is dependent with (x⃗a, ya) if for any i, xi ∈ Ta,i. Then considering all possible
a ∈ [s], we have that (x⃗, y) is not feasible to add to S iff for any i, xi ∈

⋃
a∈[s] Ta,i.

Now we apply the union bound: | ∪a∈[s] Ta,i| ≤
∑

a∈[s] |Ta,i| = s(|T |−1) ≤ p−2, since s < p−2
|T | .

Hence for each coordinate i, there are at least 2 values in the set {0, ..., p− 1} \
⋃

a∈[s] Ta,i, so there
are at least 2 choices for each coordinate xi s.t. overall (x⃗, y) is feasible to add to S. Since there are
p coordinates 0 ≤ i ≤ p− 1, this means there are at least 2p choices for x⃗ given the column y, as
desired.

Remark: The above proof remains valid if the set T of kept indices is allowed to vary across i,
i.e. for each 0 ≤ i ≤ p− 1 we have matroids Mi,j for all (i, j) s.t. j ∈ Ti ⊆ {0, ..., p− 1}, where
|T0| = |T1| = ... = |Tp−1| but otherwise each Ti can be arbitrary.

3.4. Discussion and Future Work with Grid(pp, p, 1
p
) Variants

We briefly discuss some extensions of the three variants presented above. First, in §3.2 and §3.3
we only rule out matroid shavings from {Mi,j : 0 ≤ i, j,≤ p − 1} along the i or j dimension
separately, which itself does not rule out the utility of a mixed shaving that removes some i and
some j indices. However, notice that the specific result in Theorem 6 for i-dimension shaving says
that as soon as we lose any i index we have VP = Θ(p). We claim this also rules out any mixed
shaving that completely removes some i index. Formally, if we only keep matroids Mi,j for (i, j)
in some non-empty set S ⊊ {(i, j) : 0 ≤ i, j ≤ p− 1} such that ∃ i0 s.t. (i0, j) /∈ S for all j, then
VP = VG = Θ(p) ⇒ VP

VG
= Θ(1). We can see this by first considering the i-dimension shaving with

T = {0, ..., p− 1} \ {i0} and applying Theorem 6, and then noticing that the mixed shaving defined
by S only possibly removes more matroids. Then VP and VG can only increase, but they must still
be O(p) since the maximum feasible set size remains p by Fact 10.

Then the question that remains open is whether there is any arbitrary set S ⊊ {(i, j) : 0 ≤ i, j ≤
p− 1}—that for each i contains some pair (i, j)—such that only keeping Mi,j for (i, j) ∈ S might
yield an improvement. An additional extension would be to mesh the general parameterization with
matroid shavings by considering an arbitrary Grid(r, c, q) construction and keeping an arbitrary set
of indices S ⊊ {(i, j) : 0 ≤ i < logc r, 0 ≤ j ≤ c− 1}. We have focused on Grid(pp, p, 1

p
) when

considering matroid shavings for concreteness and ease of analysis, and it is at least not immediate
that the same conclusions must hold for any Grid(r, c, q).

Our i- and j-dimension shaving and parameter optimization results are thus not exhaustive, and
the generalizations discussed above could be considered in future work. That said, we do believe
that the results so far suggest that similar micro-optimizations focused directly on the [KW12]
construction are unlikely to yield improvements. Hence alternate avenues of future work like those
discussed in §4.2 and §5.2 may be more fruitful.
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4. Writing Grid(r, c, q) with More General Matroids

Having ruled out some variants of the partition-matroid-based [KW12] construction in §3, we turn
to a second avenue of investigation. Here, we generalize our question one step further: instead of
partition matroids, can we obtain the Grid(r, c, q) construction via an intersection of matroids from
other classes in a way that achieves an improved Int(m) lower bound? In particular, is it possible
to construct arbitrary matroids {Mi = (E, Ii)}i∈[m] such that I :=

⋂
i∈[m] Ii recovers the Grid

constraints with r rows and c columns, i.e. I = I(r, c), with an asymptotically fewer number of
matroids m than if we were to only use partition matroids?

The answer is no: in §4.1, we show that partition matroids are optimal for minimizing the number
of matroids needed to write I(r, c) as a matroid intersection (Theorem 11). While this result rules
out the utility of e.g. laminar or graphic matroids in the context of Grid constructions, in §4.2 we
discuss future work on relaxing our insistence on recovering exactly Grid constraints to consider
more general hardness constructions, for which more general matroid classes may still be useful.
We also note that our question falls within the broader, relatively unstudied agenda proposed in
[SVW22] of, when given a set system I, trying to pin down the minimum number of matroids
needed to write I as a matroid intersection. As such, this result provides some partial progress on
the [SVW22] agenda for the special case of the the Grid constraint set system.

4.1. Partition Matroids Are Optimal for Grid

In this section we show that partition matroids are optimal for writing the constraints I(r, c)
of a Grid(r, c, q) construction as an intersection of the minimum number of matroids possible.
Specifically, we will constructively prove in Theorem 11 that for any (r, c), if the constraints I(r, c)
can be written as an intersection of m arbitrary matroids, then I(r, c) can in fact be written as an
intersection of m partition matroids.

Theorem 11 Consider a base set E as in the Grid(r, c, q) construction, and suppose we have m

matroidsM1, . . . ,Mm with corresponding constraints I1, . . . , Im such that I :=
⋂m

i=1 Ii = I(r, c).
Then there exist partition matroids M′

1, . . . ,M′
m with corresponding constraints I ′1, . . . , I ′m such

that
⋂m

i=1 I ′i = I(r, c).

The direct consequence is that we can rule out trying to improve the Int(m) lower bound by using
a more general set of matroids to obtain the I(r, c) constraints, in the hopes of using fewer matroids
than the number of partition matroids required. In particular, based on the connection between
partition matroid intersections for I(r, c) and the product dimension of Q(c, r) discussed previously,
the following is an immediate corollary of the theorem:
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Corollary 12 The minimum number of (possibly arbitrary) matroids that need to be intersected to
yield Grid(r, c, q) constraints I(r, c) is the product dimension PD(Q(c, r)).

A central concept for the proof of the theorem will be the set C of minimal infeasible sets
corresponding to some intersection constraints I. Specifically, any set S ∈ C is a set of elements
not in I whose proper subsets are all in I. We refer to C as the inter-circuits of I, extending the
analogous notion of circuits of a matroid to matroid intersections. Importantly, the inter-circuits C
characterize their corresponding intersection constraints I , in the sense that to preserve I it suffices
to preserve C. This is because for any set S ⊆ E, S ∈ I ⇔ ∄ C ∈ C s.t. S ⊇ C.

The crux of Theorem 11’s proof below is the fact that the inter-circuits C corresponding to I(r, c)
are very structured: they are exactly any pair of elements not in the same row, and thus in particular
any C ∈ C has size 2. Concretely, for instance, the inter-circuits for an intersection of graphic
matroids that yields I(r, c) must appear as parallel edges in some matroid; for laminar matroids that
intersect to I(r, c), inter-circuits will appear as subsets of sets A with capacity c(A) = 1 in some
laminar family A. The proof will show how these dependent size-2 sets satisfy a transitivity relation
that naturally induces a partition structure, which will be sufficient for preserving the inter-circuits,
and hence the I(r, c) constraints, overall.

Proof of Theorem 11:
Suppose we have a set of arbitrary matroids M1, . . . ,Mm defined by I1, . . . , Im such that⋂m
i=1 Ii = I(r, c) =: I (where items E are elements of a Grid with r rows, c columns). Let C

denote the inter-circuits of I. For I = I(r, c), observe that the corresponding inter-circuits are
exactly given by C = {{e1, e2} : e1, e2 are in different rows}. Since it is sufficient to preserve C in
order to preserve I, we will show how to construct from the original matroids a set of partition
matroids M′

1, . . . ,M′
m with intersection constraints I ′ :=

⋂m
i=1 I ′i, such that the corresponding

inter-circuits C ′ are equal to C. This will allow us to conclude that I ′ = I = I(r, c) as desired.

For a given matroid Mi = (E, Ii), the key idea is to consider the relation ∼ defined on E such
that for any e1 ̸= e2 ∈ E, e1 ∼ e2 ⇔ {e1, e2} /∈ Ii. This relation is clearly symmetric, and the
crucial observation is that it is also transitive: if e1 ∼ e2 and e2 ∼ e3, then e1 ∼ e3. To see why,
suppose that instead e1 ≁ e3, i.e. B := {e1, e3} ∈ Ii. Then since A := {e2} ∈ Ii (any single
element is certainly feasible in I = I(r, c)) and |B| > |A|, by the independence augmentation
property of matroids (M2) we must have that ∃ f ∈ B \ A s.t. A ∪ {f} ∈ I. But the only options
for f are e1 and e3, and we know e1 ∼ e2 and e2 ∼ e3, yielding a contradiction.

As a consequence, we can partition the elements E into partite sets E = Si
1 ⊔ ... ⊔ Si

k with the
following properties: (P1) for all j, either |Si

j| = 1 or ∀e1 ̸= e2 ∈ Sj , {e1, e2} /∈ Ii, and (P2) for
any e1, e2 ∈ E in different partite sets, {e1, e2} ∈ Ii. We do this by starting with a partition into all
singleton sets and iteratively merging two partite sets if one contains some ea and the other contains
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some eb such that ea ∼ eb. The transitivity of ∼ preserves the invariant that ∀e1 ̸= e2 in some partite
set, e1 ∼ e2. When this procedure terminates, we will thus be left with sets satisfying (P1), and (P2)
will be satisfied due to the termination condition itself. (For concrete examples in terms of laminar
and graphic matroids, see (†) below.)

Now, we let M′
i be the partition matroid defined by the partition {Si

1, . . . , S
i
k}, with constraints

I ′i = {S ⊆ E : |S ∩ Si
j| ≤ 1,∀j ∈ [k]}. From properties (P1) and (P2) above, it follows that for

all e1 ̸= e2 ∈ E, {e1, e2} ∈ I ′i ⇔ {e1, e2} ∈ Ii (⋆). Furthermore, observe that I ′i ⊇ Ii: a set
S /∈ I ′i iff |S ∩ Si

j| ≥ 2 for some j, which means that S contains some {e1, e2} ⊆ Si
j s.t. e1 ∼ e2,

i.e {e1, e2} /∈ Ii, and so S /∈ Ii. In words, we have only possibly added independent sets, not made
any sets newly dependent. In particular, while we have possibly changed some sets of size more
than 2 from dependent in Mi to independent in M′

i, the key is that keeping such sets dependent is
in fact useless given that any inter-circuit is size 2, and we have exactly preserved the dependence
status of all size-2 sets by (⋆).

Formally, consider the new intersection I ′ and corresponding inter-circuits C ′. First, C ⊆ C ′,
because using (⋆) we have {e1, e2} ∈ C ⇒ {e1, e2} /∈ Ii for some i ⇒ {e1, e2} /∈ I ′i ⇒ {e1, e2} ∈
C ′, where the last implication follows since any singleton is always feasible in partition matroids,
and so {e1, e2} is indeed minimally infeasible. Finally, we claim C ′ ⊆ C as well. If there were some
set C1 ∈ C ′ \ C, then C1 /∈ I ′i for some i⇒ C1 /∈ Ii, since Ii ⊆ I ′i. Then C1 /∈ I and so ∃C0 ⊊ C

s.t. C0 ∈ C by definition of inter-circuits. But then C0 ∈ C ′, and so C1 is not minimally infeasible
under I ′, yielding a contradiction. Thus we conclude C ′ = C as desired.

(†) Example cases of graphic and laminar matroids. For concreteness, consider the following
examples of the procedure in the proof above. If the original matroids {Mi} are graphic matroids,
then the partition Si

1⊔ · · · ⊔Si
k we construct for a given Mi is equivalent to breaking apart all cycles

of length at least 3 (i.e. true cycles in the underlying simple graph) while keeping the parallel edges
(which are the size-2 dependent sets), such that the partite sets are exactly given by the multi-edges.
If {Mi} are laminar matroids, the partition is equivalent to dropping all sets A with capacity 2 or
more, i.e. only keeping the capacity-1 sets, and possibly adding some singleton partite sets with
capacity-1 as needed. The remainder of the proof shows that though we have changed the individual
graphic and laminar matroid structures (into partition matroids), they intersect to the same I(r, c)
intersection constraints.

4.2. Future Work with Other Sufficiency Conditions

We can more generally view the Grid(r, c, q) construction as an instance of the following framework:
first identify a sufficient condition for witnessing a separation between VP and VG, and then determine
how to write it as an intersection of matroids. For Grid constructions, the sufficient condition is
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that any pair of elements in different rows is blocked from being feasible; these are precisely the
inter-circuits C for I = I(r, c).

Indeed, this condition is essential for our proof of the optimality of partition matroids for Grid:
since only the size-2 dependent sets in each matroid matter for the overall constraints, the additional
dependence structure that is possible in more general matroids becomes superfluous. But the Grid
condition is not the only sufficient condition that could plausibly induce a useful gap between VP and
VG. For instance, one easy extension that would still be sufficient (but perhaps not a useful change
overall) would be to block any set of elements all in distinct rows at least whenever the set has size
3, instead of 2, or more generally at least size k for some constant k. For constructions based on
such conditions, the argument used for the above theorem would no longer work to rule out even
e.g. graphic or laminar matroids from improving upon partition matroids, as these classes can have
circuits of size greater than 2 that might now become useful. Hence it may be fruitful to consider
other sufficient conditions that can leverage the more expressive structure of matroid classes that
generalize partition matroids.

An alternative extension of our result would be to reduce other mild generalizations of the Grid
construction back to product dimension difficulty (as in Corollary 12). As a simplistic concrete
example, suppose we thought a sufficient condition of blocking all different-row pairs except one
(or a constant number) could be useful, i.e. could be written as an intersection of asymptotically
fewer matroids. But then we could simply add in a constant number of partition matroids to block
all the missing pairs and recover the Grid sufficiency condition itself, and so asymptotically we can
only do as well as we can do with the Grid condition. Applying similar reasoning more generally
could help rule out the utility of other potential constructions relative to a product dimension-based
improvement with Grid(pp, p, 1

p
) itself.

5. Vector Matroid Constructions

The third avenue we consider is to start afresh and search for a new lower bound construction based
on vector matroids. As discussed in Fact 1, vector matroids generalize each of the matroid classes
discussed so far: any construction with partition, laminar, or graphic matroids can be expressed as a
vector matroid construction. In that sense, vector matroids are the most expressive of the classes
discussed, but this also means that the space of possible constructions to consider is much wider,
and indeed largely unexplored.

As a first step into this space, we consider intersections of vector matroids each constructed
independently and uniformly at random, motivated by a probabilistic method-based approach to
demonstrating a lower bound. The goal would be to prove that with positive probability there must
exist a hard instance, with some desired property that induces a separation between VP and VG, under
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an intersection of few enough matroids to yield an improved Int(m) lower bound. To understand the
viability of such an approach, we investigate the properties of these random intersections, in particular
the probabilities with which sets will be feasible or infeasible. In Fact 13 and Proposition 15 we
provide characterizations that suggest why we cannot use probabilistic arguments to demonstrate
a hard instance by intersecting such uniformly random vector matroids, under the assumption of
Bernoulli item values. Overall, these preliminary results inform which avenues with vector matroids
may be more promising to consider in the future, as discussed in §5.2.

5.1. Ruling Out Uniformly Random Mappings

We consider the following general setup for an intersection of vector matroids constructed independently
and uniformly at random, parameterized over the number of items n; the vector space dimension d;
and the number of matroids m. For convenience, we will refer to this as the “RandVec(n, d,m)”
setup. View the item set as E = [n]. Independently for each i ∈ [m], draw n vectors vi1, ..., vin
independently and uniformly at random (with replacement) from the vector space V = Fd for some
field F. If F is an infinite field e.g. F = R, we define such a uniformly random draw as selecting
a point uniformly at random from the unit sphere Sd in Fd. Then define Mi = (E, Ii) where
Ii = {S ⊆ E : {vij : j ∈ S} is linearly independent in V }, and finally the overall intersection
constraints are I =

⋂m
i=1 Ii. For the rest of the section, a set of vectors being “drawn randomly”

from a vector space will mean that they are drawn as specified above: independently and uniformly
at random, with replacement (so repetition is possible).

We begin by observing that this construction will not be useful when F = R, because in this case,
the vector matroids actually recover d-uniform matroids.

Fact 13 When V = Rd, then each Mi = (E, Ii) in the RandVec(n, d,m) construction will be
equivalent to a d-uniform matroid with probability 1. In particular, the intersection constraints
I =

⋂m
i=1 Ii then yield an d-uniform matroid M = (E, I).

Proof: Consider each Mi = (E, Ii) defined in the RandVec(n, d,m) setup, with vectors
vi[n] randomly drawn fromV = Rd and setting Ii = {S ⊆ E : {vij : j ∈ S} is linearly independent in V }.
We show thatMi is an d-uniform matroid. Clearly any set ofn′ > d items must be dependent,
since a set of more than d vectors cannot be independent in Rd. Hence it suffices to show that
for r = min(n, d), an arbitrary r-subset U of vi[n] is linearly independent with probability 1,
as this will imply that any S ⊆ E is in Ii iff |S| ≤ d as desired.

Consider arbitrary U ⊆ vi[n] s.t. |U | = r. U = {u1, . . . , ur} is linearly dependent
iff ∃ j ∈ [r] s.t. uj ∈ span(U \ {uj}). For any j ∈ [r], span(U \ {uj}) is at most a
(d− 1)-dimensional subspace of Rd, so since uj is drawn uniformly at random from the unit
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hypersphere in Rd, it follows that Pr [uj ∈ span(U \ {uj})] = 0.6 Union bounding over
j, we have Pr [U is dependent] ≤

∑r
j=1 Pr [uj ∈ span(U \ {uj})] = 0, as desired. The

overall claim that M = (E,
⋂m

i=1 Ii) is an d-uniform matroid simply follows from noting
that any set S of size at most d will be independent under each Ii, since each Mi is an
d-uniform matroid.

It immediately follows from Fact 13 that for any instance obtained in this way, VP

VG
= Θ(1), since

the intersection constraints just recover a single matroid and then we can apply the 2-approximation
algorithm of [KW12]. Hence we cannot use such constructions to demonstrate an improved Int(m)
lower bound. Notice that there is nothing special about R used in the proof, so Fact 13 remains true
if we replace R with any infinite field F.

The failure of the infinite field case motivates the question of whether the dependence situation
improves significantly for finite fields. We will see that the answer is negative: informally, large
sets of items are still feasible with too high a probability to hope to induce any useful separation
between VP and VG. We examine the case of V = Fd

2, but the proofs can be generalized to other Fd
r

for constant r. To start, we pin down the probability that a k-set of vectors randomly drawn from
V = Fd

2 is dependent.

Lemma 14 Consider V = Fd
2, and let U be a k-subset of vectors randomly drawn from V for some

k ≤ d. Then Pr [U is linearly dependent] = 2k−1
2d

.

Proof: Write U = {u1, . . . , uk}, and let U0 = ∅, Ui = {u1, ..., ui} ⊆ U for all 1 ≤ i < k.
Denote event Ai = {ui ∈ span(Ui−1) | Ui−1 is linearly independent in V }. Then notice the
events Ai are pairwise disjoint for all 1 ≤ i ≤ k, and the event {U is linearly dependent} is
exactly equal to A1 ⊔ · · · ⊔ Ak (i.e. it occurs iff one of the Ai’s occurs).

Thus Pr [U is linearly dependent] =
∑k

i=1 Pr [Ai]. Now observe that Pr [Ai] =
2i−1

2d
.

This is because Ui−1 being linearly independent in V = Fd
2 ⇒ |span(Ui−1)| = 2i−1, since

Ui−1 can be viewed as isomorphic to Fi−1
2 , and so for a vector ui randomly drawn from

Fd
2 (independently of Ui−1), Pr [Ai] =

|Ui−1|
|V | = 2i−1

2d
. Hence Pr [U is linearly dependent] =

20

2d
+ 21

2d
+ · · ·+ 2k−1

2d
= 2k−1

2d
.

We will now use this lemma to now analyze feasibility in intersections of vector matroids under
the general RandVec(n, d,m) setup for V = Fd

2. The crucial idea of large sets being feasible with
high probability (for m = poly(d) matroids) is presented formally in Proposition 15.

6Formally, extend a basis of U \ {uj} into a basis B of Rd. Observe that uj being in the span would mean having at
least 1 exactly 0 coordinate w.r.t. B, which occurs with probability 0 for a random draw from the unit hypersphere.
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Proposition 15 Consider the RandVec(n, d,m) setup with V = Fd
2, for any m = poly(d) number

of matroids and any n. Consider any k ≤ n such that d− k = Θ(d). Then for any k-subset S ⊆ E,
Pr [S ∈ I] = 2−2

−Ω(d) .

Before we prove Proposition 15, let us first understand why it suggests that a probabilistic method
approach to lower bounds will not be viable under this RandVec(n, d,m) setup. We assume
Bernoulli (0-1) item values (like in Grid setups) and hence view set sizes as equivalent with set
value, since only active items will be picked. First, fixing d and V = Fd

2, note that the maximum
feasible set size will be d under any resulting vector matroid intersection, and so VP

VG
= O(d).7 Then

if m is super-poly(d), this can yield at best a sub-polynomial lower bound for Int(m) and thus is
not helpful.

Otherwise if m is poly(d), Proposition 15 applies. We leave a rigorous proof of this case for future
work and instead sketch our general intuition and reasoning. Intuitively, the issue is that we expect
the gambler to do too well in the resulting RandVec(n, d,m) construction if any particular large
(e.g. d

2
-size) sets will be feasible with high probability. More specifically, a probabilistic lower bound

argument would need to show that the probability of some desired hardness condition not occurring
is less than 1. For instance, the Grid(pp, p, 1

p
) construction is characterized by different-row pairs

being blocked. One can show that intersecting Θ(p2 log(p)) properly-defined random partition
matroids ensures that the probability of such a feasible “bad” pair existing is less than 1, while
preserving the feasibility of rows. Thus there must be some choice of Θ(p2 log(p)) partition matroids
that blocks all bad pairs and recovers Grid(pp, p, 1

p
) constraints. Returning to our RandVec(n, d,m)

setup, consider the consequences of the high feasibility probabilities. For example, we cannot even
prove using the standard union bound of the probabilistic method that, fixing two arbitrary d

2
-size

subsets of items S1 and S2, there is some instance where both S1 and S2 are guaranteed to be blocked,
since 2 · Pr [Si ∈ I] = 2 · 2−2−Ω(d) ≮ 1. Given the maximum feasible set size of d, it seems that any
sufficient condition for hardness (or even just preventing the gambler from getting a constant-factor
approximation) would certainly require blocking at least some two specific d

2
-size sets, which we

cannot guarantee through these constructions.

Proof of Proposition 15: Let M1, . . . ,Mm denote our m vector matroids, where in each Mi the
corresponding vectors randomly drawn from V = Fd

2 (independently across i) are denoted vi1, . . . , vin.
Fix an arbitrary k-subset S ⊆ E, and then let Ui = {vij : j ∈ S} denote the corresponding vectors in
the ith matroid. Then Pr [S ∈ I] = Pr [Ui is linearly independent in V, ∀i ∈ [m]] = (1− 2k−1

2d
)m

by Lemma 14, since {vi1, . . . , vin} being drawn randomly meansUi itself can be viewed as a uniformly
7To see this rigorously, let B be the event that there is not even a single feasible active item. Then we can write

VP ≤ Pr [B] · 0 + (1− Pr [B]) · d and VG = Pr [B] · 0 + (1− Pr [B]) · 1 ⇒ VP

VG
= O(d).
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randomly-drawn k-subset from V , and by assumption certainly k ≤ d. Thus we have

Pr [S ∈ I] ≥ (1− 2k

2d
)m

= (1− 1

2d−k
)2

d−k · m

2d−k

≥
(
1

4

)m · 2k−d

since f(x) = (1− 1

2x
)2

x is increasing, and f(1) =
1

4

≥
(
1

4

)2−d+k+c lg d

since m = poly(d) ≤ dc for some c > 0

= 2−2
−Θ(d) since d− k = Θ(d).

Thus, accounting for the lower bounding in the derivation, overall Pr [S ∈ I] = 2−2
−Ω(d) .

5.2. Discussion and Future Work with Vector Matroids

Our results in Fact 13 and Proposition 15 broadly suggest that we will need more structured mappings
of items to vectors in Fd, perhaps cleverly correlated across the set of matroids, in order to get
mileage out of vector matroids for lower bound constructions. As we have discussed, what makes
the RandVec(n, d,m) constructions inadequate for deriving useful lower bounds is that the setup
is “too easy” for the gambler, due to arbitrary large sets being feasible with high probability. Thus
the overarching question is how to derive a more complex dependence structure from vector matroid
intersections in order to obtain a more meaningful hard instance.

We can gain some inspiration for future constructions by expressing the current Grid(pp, p, 1
p
)

construction in terms of vector matroids, recalling that partition matroids are special cases of vector
matroids. Using the chain of constructions from the proof of Fact 1 and making some simplifications,
we find that a partition matroid defined by a partition E = S1 ⊔ · · · ⊔ Sk can be viewed as the
vector matroid of the set of |E| vectors in Fk

2 given by |Si| copies of the i-th basis vector of Fk
2,

∀i ∈ [k]. Applying this representation, we can write the Grid(pp, p, 1
p
) constraints as an intersection

of p2 vector matroids, each defined by mapping the pp+1 elements to the p basis vectors of Fp
2 in a

particular way (as in §2.2) such that there are ultimately pp copies of each basis vector.

Notice that, unlike our uniformly random setting, this is indeed a very structured mapping of
elements to vectors: pp copies of each of the p basis vectors are fixed, and then in the (i, j)-th
matroid, element (x⃗, y) is mapped to a copy of the k-th basis vector according to the expression
k := xi · j+ y mod p. It may be fruitful to try to leverage parts of this structure when searching for
vector matroid-based constructions in the future, particularly given the hardness properties (§2.2.1)
we consider as guiding principles for lower bound constructions. For instance, one such variation
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that could be considered is the following: instead of having p 1-dimensional sets of pp vectors
each as in the vector version of Grid(pp, p, 1

p
), is there a useful generalization to having some q

r-dimensional sets of |E|
q

vectors each, for some q and some (likely small) r?

6. Conclusion

In this study, we investigate new constructions aimed at demonstrating an improved lower bound
for the Int(m) PI problem. The gap between an O(m) upper bounds and roughly-Ω(

√
m) lower

bounds has remained open for over a decade, so any asymptotic improvements would represent major
progress, while even ruling out certain constructions would point future work in the right direction.
To this end, we consider three main avenues that involve (1) extending the [KW12] construction to
some close variants, (2) writing the [KW12] construction’s constraints with arbitrary matroids, and
(3) constructing vector matroid intersections uniformly at random. Our main results rule out certain
constructions or approaches in each avenue.

We have discussed takeaways and future work specific to each of our three avenues in §3.4, §4.2,
and §5.2, so we conclude with two overarching implications that we draw from our results. First,
our first two avenues of investigation (§3 and §4) suggest that the only viable way forward with
the existing construction is likely to attack the combinatorial problem of improving the product
dimension: alternatives based on modifying or optimizing the existing structure simply does not
seem to help. Second, our work with vector matroids in §5 is just one starting point out of many
potential constructions with more general matroid classes. In particular, we have only scratched
the surface of an extensive body of matroid theory that could certainly inform an Int(m) lower
bound construction or reveal connections to useful linear algebraic and graph theoretic tools, just
like the connection between partition matroid intersections and the product dimension of graphs.
We believe that combining this matroid theory with the hardness principles drawn from the [KW12]
construction will be central to the search for an improved lower bound going forward.
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Appendix

A. Proof: Vector Matroids Generalize Graphic Matroids

We show that vector matroids generalize graphic matroids by proving that any graphic matroid M,
i.e. the cycle matroid of some graph G = (V,E), can be recovered as the vector matroid of the
column set of the vertex-edge incidence matrix of (a directed version of) G.

Proof [Oxl11]: Let M be the cycle matroid of G = (V,E). First, arbitrarily orient the edges of G
to obtain directed G⃗. We refer to an edge with the same head and tail as a “loop” edge; all other
edges are “non-loop” edges. Define the incidence matrix A(G⃗), with entries viewed over any field
F, as the |V | × |E| matrix where each column represents an edge, and

aij =


1 edge j is non-loop, vertex i is its head

−1 edge j is non-loop, vertex i is its tail

0 otherwise

.
We first show why a dependent set in M, i.e. a set S of edges that contains a cycle, corresponds

to a linearly dependent set of columns of A(G⃗). If S contains a loop edge e0, then observe that
the corresponding column in A(G⃗) is the zero vector 0⃗ and hence S is already linearly dependent.
Otherwise, S contains some cycle C ⊆ E given by edges C = e1 → · · · → et of (undirected) G,
with some corresponding vertices v1 → · · · → vt → v1. Let e⃗1, . . . , e⃗t denote the column vectors
corresponding to the edges of C. For each k ∈ [t], let ck = ±1: 1 if the orientation of ek in G⃗

matches the orientation we traverse ek when traversing the cycle C as e1 → · · · → et, and −1

otherwise. Then one can observe that the linear combination given by c1e⃗1 + · · ·+ cte⃗t is equal to 0⃗:
each row/vertex in the cycle gets exactly one +1 and −1 in the sum, which cancel out and leave an
overall sum of 0⃗.

To complete the proof, we need to show why any linearly dependent set T of A(G⃗)’s columns
correspond to a set of edges Te of G containing a cycle; then it will follow that independence
constraints of the vector matroid of A(G⃗) must be exactly equal to those of M. First, if T contains
some column e⃗ = 0⃗, then the corresponding edge e ∈ Te must be a self-loop, and hence we are done.
Otherwise, suppose T = {e⃗1, ..., e⃗t} is our set of columns, corresponding to edges Te = {e1, . . . , et},
such that some not-all-zero linear combination c1e⃗1 + · · · + cte⃗t yields 0⃗. Consider any vertex v

incident to any edge in Te, i.e. the corresponding row v is non-zero in some vector e⃗j ∈ T . For
the overall sum in row v to be zero, notice that there must be a non-zero entry at row v in some
other vector e⃗k as well. Translated to graph language, each vertex v incident to an edge in Te has
degree at least 2 in the subgraph defined by Te. This immediately implies that Te must contain a
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cycle: one can consider an extremal argument by taking a longest path in the subgraph, and then
noticing that there must be another edge from the final vertex that creates a cycle. Hence for any
linearly dependent set T of columns, the corresponding set of edges Te contains a cycle and hence is
dependent in the original graphic matroid M.

B. Binomial Analysis for Prophet Value

To rigorously prove Fact 5 on the prophet’s value we must analyze the underlying binomial distributions
in Grid(r, c, q) constructions. Recall that in the Grid(r, c, q) construction, the total value of elements
in a given row i is given by a random variable Ri ∼ Bin(c, q). Thus the prophet’s value is given by
VP = E[max1≤i≤r Ri]. Then to pin down VP in the case that VP = Ω(1) is known, the key question
is what the largest (“threshold”) value T is that the Bin(c, q) distribution will exceed with probability
Ω(1

r
), as formalized in Fact 5 rewritten below.

Fact 5 (rewritten). Consider a Grid(r, c, q) construction with row values Ri ∼ Bin(c, q), and
suppose VP = Ω(1) is known. Let T be the largest value of x up to c such that Pr [Ri ≥ x] = Ω(1

r
)

Then VP = Θ(T ).

Proof: We first show that forT as defined above, VP = Ω(T ). We haveVP = E[max1≤i≤r Ri] ≥
Pr [max1≤i≤r(Ri) ≥ T ] ·T . Then we have thatPr [max1≤i≤r(Ri) ≥ T ] = 1−(1−Pr [R ≥ T ])r ≥
1 − (1 − k

r
)r ≥ 1 − (1

e
)k, for some constant k (asymptotically). Here R represents the

random value of any particular row (noting that the row values Ri are all i.i.d). Hence we
conclude VP ≥ (1− (1

e
)k)T = Ω(T ), since k is a constant.

The upper bound is the main content of this statement. We can express the prophet value
precisely as follows:

VP = E[max
1≤i≤r

(Ri)]

=

∫ ∞
x=0

Pr

[
max
1≤i≤r

(Ri) ≥ x

]
dx E of non-neg. r.v.

≤
∫ ∞
x=0

min{r · Pr [R ≥ x] , 1}dx by union bound, where R ∼ Bin(c, q)

=

∫ T

x=0

1dx+

∫ ∞
x=T

r · Pr [R ≥ x] by def’n of T

= T + r

∫ ∞
x=T

· Pr [R ≥ x]

The key assertion that we use but do not prove here is the following: given our definition
of T , under the assumption that VP = Ω(1), the integral r

∫∞
x=T

· Pr [R ≥ x] is in fact O(T ).
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This technical fact can be derived using binomial tail bounds; the rough idea is that binomial
distributions are not tail-heavy. Then we have VP ≤ T +O(T ) = O(T ), and hence overall
we conclude VP = Θ(T ).

We also use the following concentration inequality that results from applying a Chernoff bound to
a binomial random variable, which can be found in e.g. [HB23].

Fact 16 For X ∼ Bin(n, p) with mean µ = np and any δ ≥ 0,

Pr [X ≥ (1 + δ)µ] ≤ exp(−µ[(1 + δ) ln(1 + δ)− δ])

.

C. Proofs from §4: [KW12] Construction Variants

We complete the omitted sections of Theorem 4’s proof in the following two claims. We assume a
general Grid(r, c, q) setup as in the theorem (but we do not re-parameterize for the following claim,
for simplicity).

Claim 17 Let A denote the event that there exists an active element in an instance of Grid(r, c, q),
and let NA be a random variable denoting the number of active elements. Then VG = o(1) implies
E[NA] ≤ 1

2
and furthermore that VG ≥ VP/2.

Proof: We show the first implication by contrapositive, so assume E[NA] ≥ 1
2
. Given r · c

elements each with Bern(q) values, by linearity E[NA] = rcq. Then q ≥ 1
2rc

, and in particular
Pr [A] = 1− (1− q)rc ≥ 1− (1− 1

2rc
)rc ≥ 1− (1/e)1/2 = Θ(1). Now observe that gambler value

VG is at least Pr [A], by considering the strategy of simply picking the first active element seen, and
so VG = Θ(1).

We now show that VG = o(1) ⇒ VG ≥ VP/2. The key claim is that Pr [A] ≥ E[NA](1−E[NA]):
this is clearly only useful when E[NA] < 1, but this is exactly the case we are in. To see why
this is sufficient, observe that VG ≥ Pr [A] while VP ≤ E[NA], since for Bernoulli values we
have VP = E[maxS∈I{number of active elements in S}] ≤ E[NA]. Then, since we have shown that
VG = o(1) ⇒ E[NA] ≤ 1

2
, we can conclude VG ≥ Pr [A] ≥ E[NA](1−E[NA]) ≥ E[NA]/2 ≥ VP/2.

The short proof of the key claim follows. Let E denote the set of elements, and let EA denote the
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(random) set of active elements below.

Pr [A] ≥ Pr [NA = 1]

=
∑
e∈E

Pr [e ∈ EA] Pr [f /∈ EA, ∀f ̸= e ∈ E]

≥
∑
e∈E

Pr [e ∈ EA] (1− E[NA]) (⋆)

= (1− E[NA])
∑
e∈E

Pr [e ∈ EA]

= (1− E[NA])E[NA] by linearity

where (⋆) is true because at least one element is active in the event ¬{f /∈ EA,∀f ̸= e ∈ E}, and
so E[NA] ≥ 1 · (1− Pr [f /∈ EA,∀f ̸= e ∈ E]).

We complete the final derivation in Theorem 4 in the following claim.

Claim 18 Let p, a(p), b(p),m, k be as defined in §3.1 and the proof of Theorem 4. For T ′ =

(1+pa(p)−1)
√
m = (1+pa(p)−1)

√
pa(p) · b(p)

a(p)
, it holds asymptotically that Pr

[
Bin(pa(p), 1

p
) ≥ T ′

]
≤

k
r
= k

pb(p)
.

Proof: We henceforth write a := a(p), b := b(p) for brevity throughout the derivation but we
emphasize these are still functions of p. Let X ∼ Bin(pa, 1

p
), with µ = E[X] = pa−1. Observe that

T ′ = (1 + pa−1)
√

pa · b
a
> µ, so let δ > 0 be such that T ′ = (1 + δ)µ.

By the Chernoff bound from Fact 16, we have Pr [X ≥ T ′] ≤ exp(−µ[(1 + δ) ln(1 + δ) − δ]).
By rewriting the claimed bound, observe that it suffices to show that µ[(1 + δ) ln(1 + δ) − δ] ≥
(b ln p− ln k), as derived below.

µ(1 + δ) ln(1 + δ)− µδ = T ′ ln(1 + δ)− (T ′ − µ) def’n of δ

= T ′ [ln(T ′/µ)− 1] + µ (1 + δ) =
T ′

µ

= (1 + pa−1)

√
pa ·

b

a
·

[
ln

(
1 + pa−1

pa−1

√
pa ·

b

a

)
− 1

]
+ µ def’n of T ′, µ

≥ (1 + pa−1)

√
pa ·

b

a
·

[
ln

(
(1 + p1−a)

√
pa ·

b

a

)
− 1

]

Since ln
(
(1 + p1−a)

√
pa · b

a

)
≫ 1 asymptotically in the parameter m = pa · b

a
, we can drop the

final −1 in the above expression. We want to show that this expression is at least (b ln p− ln k) but
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observe that ln k is just a constant, while the above expression again is ≫ 1 asymptotically in our
parameters. Hence we can neglect the ln k term as well. Now, when a > 1, we have

(1 + pa−1)

√
pa ·

b

a
·

[
ln

(
(1 + p1−a)

√
pa ·

b

a

)]
≥ pa−1√

a

√
pa · b drop the ln term

≥ pa−1√
a
b b < pa by assumption

> b ln p

where the last inequality follows because it can be shown that pa−1
√
a

> ln(p) holds asymptotically
in p for a = a(p) > 1.

In the other case when a ≤ 1,

(1 + pa−1)

√
pa ·

b

a
· ln

(
(1 + p1−a)

√
pa ·

b

a

)
≥ (
√

pa · b) · ln
(
p1−a

√
pa · b

)
= (
√

pa · b) · ln
(√

p · p1−a · b
)

= b ·
√

pa

b
· ln

(
p/

√
pa

b

)
≥ b ln p

where the last inequality follows because k(p) · ln( p
k(p)

) > ln(p) is true asymptotically in p, for any

1 < k(p) < p (and we set k =
√

pa

b
, which satisfies this as b < pa and a ≤ 1).

Thus we can conclude overall that µ[(1 + δ) ln(1 + δ)− δ] ≥ b ln p for all a, which completes the
proof of the claim and in turn the proof of Theorem 4.

The proof for Lemma 7 (repeated from above) is also presented below.

Lemma 7. Define I based on the intersection of matroids Mi,j , each as defined for Grid(pp, p, 1
p
),

but only over all i ∈ T , 0 ≤ j ≤ p − 1. Then I = {S ⊆ E : ∀(x⃗a, ya), (x⃗b, yb) ∈ S, xa,T =

xb,T and ya ̸= yb}.

Proof of Lemma 7: We first show that any set S satisfying the conditions in the statement is
independent in all matroids Mi,j for i ∈ T , 0 ≤ j ≤ p − 1. Specifically, for any two elements
ea = (x⃗a, ya) and eb = (x⃗b, yb) s.t. xa,T = xb,T and ya ̸= yb, ∄Si,j

k s.t. both ea and eb are in Si,j
k .

This is because for any i ∈ T , xa,i = xb,i, so xa,i · j+ya ̸= xb,i · j+yb (mod p) for all 0 ≤ j ≤ p−1

since ya ̸= yb (mod p).
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Any set S not satisfying the conditions in the statement must have two elements ea = (x⃗a, ya),
eb = (x⃗b, yb) s.t. either ya = yb or xa,T ̸= xb,T . Thus to complete the proof, it suffices to show that
∃Si,j

k s.t. ea and eb are both in Si,j
k , and hence the set S containing them is not independent in M i,j .

First, if xa,T ̸= xb,T , then ∃ i ∈ T s.t. xa,i ̸= xb,i. Then the same argument from Proposition
2 shows that there exists 0 ≤ j ≤ p − 1 s.t. xa,i · j + ya = xb,i · j + yb (mod p) =: k, and then
ea, eb ∈ Si,j

k . The new case to handle is ya = yb: here, observe that xa,i · 0 + ya = xb,i · 0 + yb

(mod p) holds for any i, and in particular both ea, eb are in Si,0
ya .
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