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Abstract

We study circuits for the parity synthesis subroutine in quantum computing from
a space-depth tradeoff perspective, motivated by applications in e.g. synthesis of
Hamiltonian simulation circuits. We first overview two existing approaches at opposite
ends of the space vs. depth spectrum. Our main contribution is to then provide a
framework that fills in the gap between these two extremes, by enabling finer-grained
control over the space-depth tradeoff using a tunable parameter c. Our framework
builds upon the block extension algorithm of [BBV+21] by leveraging additional ancilla
to proportionally parallelize the existing computations.
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1 Introduction

Quantum computing (QC) is a paradigm with the potential to transform computer science,
yet its practical capabilities are hindered by physical limitations of current quantum computers,
leading to significant resource constraints. For instance, applying a gate to a qubit—the
basic computational operation in QC—is a noisy process in practice. This noise compounds
across multiple operations, leading to increasing errors as the number of gates required to
perform a computation grows. Another particularly challenging problem is that qubits only
stay coherent for short periods of time, due to inevitable interactions with the external
environment that disturb the qubits’ state. This decoherence limits the time for which a
quantum computer can feasibly be run in practice before starting to incur significant errors.

Quantum compilation aims to bridge this gap between theoretical procedures and practical
implementations by analyzing how an algorithm, expressed as a quantum circuit, can be
optimized and implemented in a more resource-efficient way. More specifically, the goal is to
optimize some metric of circuit resources, such as the number of qubits used; the total gate
count; or the circuit depth (i.e. the number of layers of gates in a circuit). In this project,
we will focus on circuit depth. This metric roughly captures the time required to execute a
circuit, as each layer of gates represents a step of operations that act on disjoint qubits and
thus can be executed in parallel. (Concretely, for instance, the circuits shown in Figure 2
and Figure 3 both have depth 3 despite the circuit in Figure 3 having more gates, as these
gates can be implemented in parallel as shown.) As a result, optimizing circuit depth is an
important method for coping with the challenge presented by qubit decoherence.

Some basic, myopic techniques in quantum compilation include removing groups of gates
that cancel each other out or reordering commuting gate blocks to minimize depth, but more
sophisticated and powerful techniques can be developed for specific classes of problems. One
such class of problems of central importance in QC is Hamiltonian simulation. This is the task
of implementing a circuit to model the evolution of a quantum system governed by a given
Hamiltonian. Many Hamiltonians of interest can be expressed as a sum of Pauli operators, in
which case the problem boils down to implementing a sequence of Pauli rotations. Modulo
some gates required for basis changes, the main components of implementing each Pauli
rotation are computing a corresponding parity between qubits through a ladder of CNOTs
(a type of 2-qubit gate); applying a single-qubit rotation (e.g. via an RZ gate) on that parity;
and then uncomputing the parity through a reverse ladder of CNOTs.1

From a compilation perspective, the bottleneck in this procedure is the set of CNOT
gates, as these 2-qubit gates are more costly to implement than the single-qubit rotation
gates in common physical QC systems like superconducting- and trapped ion-based QC
[MZ22, DLF+16]. Thus the optimization objective often boils down to the CNOT depth of
the circuit, i.e. considering the network of CNOTs used to construct the required parities and
ignoring the single-qubit rotations interspersed throughout the overall circuit. In particular,
we can reduce the problem for our purposes to the task of synthesizing a parity network

1We will introduce some of the key concepts relevant to our specific project, like CNOT gates, in Section 2.
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[AAM18, VMGDB22], or a CNOT circuit where each desired parity are present at some
point throughout the course of the circuit the circuit. The optimization goal is then to
construct a parity network with as low depth as possible.

In this project, we study a variant of this parity network synthesis task where we instead
require all parities to appear simultaneously in the circuit. In particular, we will suppose
that in addition to the original “data” qubits, we have access to a set of ancilla qubits, and
we then want to synthesize the parities onto these ancilla such that all parities exist together
at the same time on these ancilla (rather than being interspersed at various points in the
circuit).2

Our motivation for studying this variant of parity synthesis comes from a broader agenda
of applying techniques like measurement-based quantum computing (MBQC) to optimize
Hamiltonian simulation circuits. Very briefly, conditional corrections that arise in MBQC
induce a specific order in which Pauli rotations must be executed, which is then not compatible
with the standard parity network problem, where there is no guarantee on the order in
which parities arise. If we instead have all parities present simultaneously on ancilla, then
rotations can be executed in any desired order. Another motivation for this variant is the
case of “CNOT+T” circuits [BBV+21, AMM13], where it is very beneficial to execute the
costly3 T gates—each associated with a parity—in parallel, thus suggesting the same benefit
from enforcing that all parities be present simultaneously. For the purposes of this project,
however, we will abstract our problem away from this underlying motivation and focus our
attention on the modular problem that we define formally in the next section.

1.1 Our Problem

Formally, we consider the ParallelParities problem, defined as follows.

Problem: ParallelParities

Input: n data qubits x = {x1, ..., xn}; p
parities {f1(x), ...., fp(x)} over the
data qubits; m ancilla

Output: In minimal depth, synthesize the p
parities on ancilla simultaneously

Given n data qubits x = {x1, ..., xn},
p parities {f1(x), ...., fp(x)} over the data
qubits, and some number m ≥ p of available
ancilla qubits, the goal is to construct a
circuit of minimal depth in which the p
parities are synthesized onto the ancilla such
that they are present simultaneously, that is,
all parities are stored on ancilla qubits at
some single point in the circuit.

Observe that the number m of ancilla is an input to the problem here. In general,
using more ancilla provides more resources for a quantum circuit to exploit: for instance,

2Note that, letting n be the number of data qubits, one could also consider synthesizing n of the parities
on the data qubits (the number of parities required is often larger than n in practical use cases). We choose
to state our model and problem in terms of synthesis only onto ancilla qubits for clarity and simplicity of the
resulting ideas.

3T gates are highly costly in fault-tolerant settings. See [AMM13] for further discussion.
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ancilla qubits can store intermediate computations and can enable executions of additional
operations in parallel. It is thus natural to expect—or, at least, hope—that as the number
of ancilla available increases (i.e. larger m), the depth necessary to implement a circuit
achieving ParallelParities should decrease commensurately, if any parallelization across
the ancilla can be leveraged. The problem formulation thus suggests a tradeoff between
resources, with ancilla usage (which we refer to as a circuit’s space usage) on one end and
circuit depth (which is a proxy for circuit execution time) on the other.

Our specific goal in this project is to develop a better quantitative understanding of
this tradeoff between space and depth in the ParallelParities problem. Our main
contribution, presented in Section 4, is to provide a simple framework that allows this space-
depth tradeoff to be controlled at a finer-grained level than before. This framework enables
instance-specific allocation of space and depth costs, thereby making the optimization of
circuit resources for this variant of the parity synthesis problem much more practically feasible
than before.

2 Background and Preliminaries

Notation. We first fix some basic notation and conventions. All logs will be base 2. For
a m-by-n matrix A, A[S] denotes the subset of rows indexed by the set S (for some S ⊆
[m]). Similarly A[r1: r2] denotes the submatrix defined by rows r1 through r2 inclusive.
A[r1: r2; c1: c2] denotes the submatrix defined by rows r1 through r2 inclusive and columns
c1 through c2 inclusive. We use ⊕ to denote addition in F2, i.e. the addition to compute
a parity. We will denote a m-by-n Boolean (i.e. over F2) matrix A as A ∈ Fm×n

2 . We
will sometimes use “wires” to refer to the circuit wires (indicated by horizontal lines in e.g.
Figures 1 through 3) that carry qubit values, as this is sometimes useful to distinguish from
the original logical values of the data qubits themselves. Figures 1 through 3 are examples
of quantum circuit diagrams : the qubits/wires are denoted by the horizontal lines, and gate
operations that act on these qubits are then drawn left to right in order of application.

Model. We now describe the model in which we study the ParallelParities problem,
following the same general model used in prior literature on CNOT circuit synthesis (e.g.
[PMH03, BBV+21, MZ22]). As a high-level summary, our model is formulated at a level of
abstraction where the synthesis task in ParallelParities turns into a classical algorithm
design problem in terms of Boolean matrices. First, we use x = {x1, x2, . . . , xn} to denote
the n data qubits. The key abstraction we exploit in our problem is that we only care about
computing parities between the different qubits, and hence we will simply think of each xi

as an element of F2 (i.e. like classical bits). We will then denote a parity over the qubits x
by fj(x). We slightly abuse notation in that we generally use fj(x) to refer to a sum (over
F2) of some set of xi’s, e.g. fj(x) = x1 ⊕ x2 ⊕ x4, but we occasionally use the same notation
to represent a parity as a vector in Fn

2 where the one values represent which xi’s are part of
the parity sum. We do this to simplify notation, as the meaning will be clear from context.
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Next, an ancilla qubit represents an additional “helper” qubit used as an extra resource
in a circuit. Ancilla qubits start in the zero state, denoted |0⟩. The controlled-NOT (CNOT)
gate is a 2-qubit gate that acts on a control qubit and a target qubit, depicted in Figure 1.
The action of a CNOT is to add the control qubit parity into the target qubit, i.e. it flips
the target conditioned on the control being in the one state. Formally, for control qubit xi

and target qubit xj, CNOT(xi, xj) = (xi, xi ⊕ xj).
4

xi

xj

CNOT(xi, xj) = (xi, xi ⊕ xj)

Figure 1: A single CNOT gate with control qubit xi and target xj.

CNOT circuits and linear reversible transformations. In this model, we can then
represent circuits of CNOT gates over n data qubits as linear reversible transformations
(over F2), concretely specified by an invertible n-byn Boolean matrix. First, observe that
we can encode a single CNOT(xi, xj) as a left-multiplication of the state x by the matrix
Aij = In + eje

⊤
i ∈ GLn(F2), where ek ∈ Fn

2 denotes the one-hot vector with a one at index k
and zeros everywhere else. In words, Aij is the identity matrix with an additional 1 in row j,
column i. The transformation Aijx thus has the effect of changing xj to xi ⊕ xj, as desired.
A CNOT circuit is then simply a product of such matrices, which overall will be some matrix
A ∈ GLn(F2).

In fact, there is a stronger correspondence: conversely, any linear reversible transformation
can be implemented concretely as a CNOT circuit. Consider any invertible Boolean matrix
A ∈ GLn(F2). We think of each row i of A as encoding the final parity desired on wire i
(where the value at column j specifies whether the parity includes the jth data qubit). Recall
that any invertible matrix can be expressed as a product of elementary matrices, which are
the matrices corresponding to the three elementary row operations: row multiplication (by
a nonzero scalar); row addition; and row swapping. The first operation is vacuous over F2.
Next, the key is that row addition operations are given exactly by the matrices corresponding
to CNOTs, as defined above: CNOT(i, j) is the addition of row i to row j. Finally, row
swapping over F2 can simply be implemented as three row additions. This is visualized
through an annotated circuit of CNOTs in Figure 2. Thus any A can be expressed as a
product of row addition operations, that is, implemented as a sequence of CNOT gates.

Linear reversible synthesis routines over n qubits. As a result of this correspondence,
such CNOT-only circuits over n data qubits are also called linear reversible circuits, and
the task of synthesizing a given n-qubit linear reversible circuit can be abstracted into
the problem of efficiently constructing the corresponding invertible Boolean matrix from

4Note that we do not discuss the standard general formalism in quantum computing where an n-qubit
state is represented by a 2n-dimensional vector of amplitudes and any n-qubit gate is then given by a 2n-by-2n

unitary matrix. This is because our problem focuses only parity synthesis and CNOT gates, which can be
expressed more concisely via n-by-n Boolean matrices, as [PMH03] discuss. This enables us to work in a
classical model of parities rather than a general quantum model of qubits and quantum gates.
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xi

xj

1 2 3

1: (xi, xi ⊕ xj). 2: (xj, xi ⊕ xj). 3: (xj, xi)

Figure 2: Row swapping with three row additions (CNOTs). The annotations show the
parity states at each point in the circuit: (xi, xj) → (xi, xi⊕xj) → (xj, xi⊕xj) → (xi, xj).

row addition operations. This problem has been studied quite extensively in the quantum
compilation/synthesis literature (e.g. [PMH03, BBV+21, JST+20, MZ22]) given the importance
of optimizing blocks of CNOT gates that appear as subcircuits of various procedures. Particularly
relevant to our project is the existing work on developing n-qubit linear reversible synthesis
routines that minimize the depth of the resulting CNOT circuit. In this vein, [JST+20]
present an algorithm for n-qubit linear reversible synthesis that achieves an asymptotically
optimal depth of Θ(n log n), matching the lower bound implied by a counting argument
in [PMH03]. This procedure, however, is not efficient in practice due to relatively high
constant factors; indeed, in the regimes of current applications where the number of qubits n
is moderate, asymptotics do not necessarily capture concrete efficiency. Instead, an algorithm
due to Maslov and Zindorf [MZ22] (hereafter MZ) achieves state-of-the-art depth performance
in the regime where 70 ≤ n ≤ 1, 345, 000, guaranteeing depth upper bounded by

dMZ(n) := n+ 2 log2 n+ 3 log n.5

Remark. We will use n-qubit linear reversible synthesis (instantiated with e.g. the MZ
algorithm) as an important (blackbox) subroutine in our approach, but we emphasize that it
does not just directly solve the same problem as our parity synthesis task inParallelParities.
For instance, note that the number p of parities we need to synthesize (onto ancilla) may be
≫ n. In addition, the final parities on qubits in n-qubit linear reversible synthesis must all be
linearly independent (by virtue of the reversibility, i.e. the invertibility of the corresponding
Boolean matrix); we have no such guarantees on our set of parities over data qubits, which
may be highly dependent.6

Logarithmic depth spreading. We conclude our preliminaries with a simple but handy
building block that we will use for spreading some qubit xi’s parity value to a set of wires that
start in the |0⟩ state. That is, we want to map a set of wires starting in state (xi, 0, 0, . . . , 0)
to (xi, xi, . . . , xi). (This can be thought of as a special case of so-called quantum FanOut,
with the additional guarantee that all other wires start in the |0⟩ state.)

If there are k wires, then this can be done naively with k sequential CNOTs from xi to each
of the |0⟩ wires. This requires depth k, since clearly none of these CNOTs can be parallelized.

5This bound is slightly loser but cleaner in terms of coefficients relative to the exact bound given in [MZ22].
6One option would be to treat ancilla qubits as data qubits (with the knowledge that they start in state

state |0⟩ and hence wouldn’t affect the actual desired parities), as the parities would be “independent” when
viewed as including ancilla qubits. We could then directly run a (n+ p)-qubit linear reversible synthesis. We
will return to this in Section 3.1 and see why it is not a good idea.
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Alternatively, we can spread xi through a binary tree-like spreading procedure across the
wires, by using CNOT target qubits as controls for future CNOT layers to parallelize the
computation (rather than only controlling on xi). An example is visualized in Figure 3,
for k = 7 wires. In general, spreading to k wires in this way requires depth ⌈log (k + 1)⌉.
Observe that the same idea can be applied in reverse as a straightforward way to compute a
single parity from a set of wires. Indeed we will use this idea in both directions in upcoming
procedures.

x0

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Figure 3: Log-depth spreading procedure through a binary tree-like CNOT structure: spreads
a qubit xi to k wires in ⌈log (k + 1)⌉ depth. Here, k = 7.

3 Existing Approaches: Two Extremes

We now present two approaches to ParallelParities based on existing ideas at two ends
of the space vs. depth spectrum. The first, in Section 3.1, can be viewed as optimizing
for space usage, i.e. using a minimal number of ancilla, and the algorithm therein (due to
[BBV+21]) is the main routine upon which we build our controllable framework. The second
approach, in Section 3.2, is a simple idea for how one might try to achieve minimal depth
given ample access to ancilla.

3.1 Minimizing ancilla usage

We first consider a minimal usage of ancilla. Given the requirement that all parities be
present simultaneously on ancilla, we need at least one ancilla for each parity. Thus we
suppose we have only m = p ancilla available as a minimal amount. A straightforward
idea would be to directly run a linear reversible synthesis routine over all n + p qubits. In
particular, this would involve treating each ancilla qubit as a “dummy” data qubit that is
part of the corresponding parity to be stored on its wire: this would make the final parities
“linearly independent” as needed for reversible synthesis, while the ancilla (starting in |0⟩)
would not affect the actual desired parities. However, using this naive approach with e.g. the
MZ algorithm for linear reversible synthesis would incur depth linear in (n+p), where p may
be ≫ n. We will see that we can do much better, even when restricted to just p ancilla, with
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a fairly simple procedure due to [BBV+21] (Section 5) that involves parallel applications of
linear reversible synthesis.

We start by viewing this task as an isometry synthesis from n data qubits to n + p
total qubits, with p ancilla qubits initialized to |0⟩.7 We frame the problem in terms of
Boolean matrices similarly to the correspondence discussed Section 2—but with a modified
representation that enables us to actually distinguish the n data qubits and p ancilla starting
in |0⟩, unlike in the strawman approach in the previous paragraph. In particular, we now
view the state of the parities on wires as an (n + p)× n rectangular Boolean matrix, where
each row i represents the parity stored on a wire i expressed over the n data qubits, with
column j corresponding to jth data qubit. We will refer to this rectangular representation
as the parity state matrix (or just parity state) of the qubits. In particular, the initial parity

state is given by Ain ∈ F(n+p)×n
2 where Ain[1:n] = In and Ain[n + 1:n + p] = 0. The final

parity state desired is given by Aout ∈ F(n+p)×n
2 where Aout[1 : n] = In and Aout[n+i] = fi(x).

8

These matrices are visualized in Figure 4. The goal is then to transform Ain into Aout with
a CNOT circuit C applied over the n + p qubits. Such a CNOT circuit can be represented
as a matrix C ∈ F(n+p)×(n+p)

2 —based on row additions on the identity matrix, just as in
Section 2—such that Aout = CAin.

n

p

n

Ain =

In

0

n

p

n

Aout =

In

f1(x)
f2(x)
...

...
fi(x)

fp(x)

Figure 4: Synthesis with m := p ancilla: initial and final parity states.

We can synthesize such a CNOT circuit C by applying a block extension algorithm
proposed by [BBV+21], which we will refer to as the Block algorithm. This algorithm
takes as input a routine for synthesizing an n-qubit linear reversible circuit (treated as a
blackbox) and yields an upper bound on the depth for implementing C as a function of the
depth of the input routine, as presented in the following lemma. Note that we present main

7For formal details on isometry synthesis, we defer the interested reader to e.g. [SYJ23].
8Depending on the setting it may or may not be necessary to return the data qubits to their original

parity state as specified in Aout here. In the algorithm we describe this turns out not to affect the final depth
bound. Furthermore, the order of the parities on the ancilla qubits does matter, so it may be possible to
group parities in an instance-specific way to achieve slight depth gains.
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results (both this existing algorithm and our new framework) under assumptions that various
parameters are divisible as needed for simplicity of exposition. We will later briefly address
in the Appendix how the general cases without divisibility assumptions can be handled
(Appendix A.1 and A.2).

Lemma 3.1 (Block algorithm [BBV+21]). Suppose n divides p. Let d(n) be an upper bound
on the depth required to implement an n-qubit linear reversible transformation. Then a CNOT
circuit C that transforms Ain ∈ F(n+p)×n

2 to Aout ∈ F(n+p)×n
2 (that is, C ∈ F(n+p)×(n+p)

2 such
that Aout = CAin) can be synthesized in depth upper bounded by d(n) + 2⌈log( p

n
+ 1)⌉.

We can apply theBlock algorithm with theMZ routine for implementing linear reversible
circuits, which has a depth upper bound of dMZ(n) = ⌊n+ 2 log2 n+ 3 log n⌋ for 70 ≤ n ≤
1, 345, 000. This immediately yields the following concrete bound.

Corollary 3.2 (Block algorithm [BBV+21] with MZ). Suppose n divides p. For 70 ≤ n ≤
1, 345, 000, a CNOT circuit C that transforms Ain to Aout can be synthesized in depth at most
⌊n+ 2 log2(n) + 3 log(n)⌋ +2⌈log( p

n
+ 1)⌉.

We review the Block algorithm here for completeness, as it also underlies our main
contribution. The key idea is to divide the (n+ p)× n parity state matrix into n× n blocks
that can be efficiently operated on in parallel with a linear reversible transformation. In
particular, with only logarithmic depth overhead, each n× n block of the input and output
parity states can be made full-rank, and then we can transform each modified input block
into the corresponding output block by synthesizing the appropriate CNOT circuit. The
motivation for working with full-rank blocks comes from the fact that a linear reversible
circuit is represented by an invertible matrix over F2 (as discussed in Section 2), and hence
applying our input linear reversible synthesis routine on an input block can only yield an
output block with the same rank. A priori the rank of each output block of the desired
parities can be arbitrary, so we modify each input and output block into a full-rank version
in order to ensure equality between ranks. Then the input blocks can be transformed into
the corresponding output blocks through parallel CNOT circuits Ci ∈ GL(F2) via linear
reversible synthesis over the qubits of each block i. Putting all of these component circuits
together yields the final desired circuit C. Overall, the point is that parallelizing over blocks
leads to the depth being dominated by a d(n) term (Lemma 3.1) rather than a much costlier
d(n+ p) term.

Proof of Lemma 3.1. Let b = p
n
+1. For 1 ≤ i ≤ b, let Qi = {(i−1)·n+1, . . . , i·n} represent a

n-subset of the n+p total qubits. We divide Ain ∈ F(n+p)×n
2 into b blocks A1

in, . . . , A
b
in ∈ Fn×n

2 ,
where each ith block is defined by Ai

in = Ain[Qi], ∀i ∈ {1, . . . , b}. Analogously define blocks
(A1

out, . . . , A
b
out), with Ai

out = Aout[Qi], ∀i ∈ {1, . . . , b}.
The main observation of the Block algorithm is the following: assuming only that

A1
in ∈ Fn×n

2 (resp. A1
out) is full-rank, the rest of the blocks Ai

in (resp. Ai
out) can also be

made full-rank in ⌈log(b)⌉ depth. We will denote the full rank version of block Ai
in by Âi

in,
and similarly Âi

out for Ai
out, where Â1

in = A1
in and Â1

out = A1
out. The key idea behind this
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observation to add partial permutations of one block to another. Specifically, given any
A,B ∈ Fn×n

2 such that A is full rank, there exists a partial permutation P such that B+PA
is full rank (Lemma 5.1 in [BBV+21]). Adding a partial permutation of A to B can be
implemented by a depth-1 CNOT circuit, since controls are distinct qubits in A and targets
are distinct qubits in B by definition of a permutation.

In particular, consider the input parity state Ain. Since we start with A1
in as full-rank,

the rest of the blocks can be made full-rank through a tree-like spreading procedure like in
Figure 3, just on blocks instead of individual qubits and with partial permutations P instead
of a single CNOT. Concretely, in the first layer, add the appropriate partial permutation P
of Â1

in to A2
in to obtain Â2

in; in the next layer, add the appropriate P of Â1
in to A3

in to obtain
Â3

in and the appropriate P of Â2
in to A4

in to obtain Â4
in; and so on.9

It follows that ⌈log(b)⌉ layers are required to make all blocks full-rank. Since each layer
involves qubit-disjoint CNOTs and is hence depth 1, the process requires at most ⌈log(b)⌉
total depth. The analogous procedure for the output parity state Aout yields the same result:
we can obtain full rank versions Âi

out of each block Ai
out in ⌈log(b)⌉ depth. For each i, let Gi

be the CNOT circuit of depth at most ⌈log(b)⌉ such that GiA
i
out = Âi

out.

Now consider the full-rank blocks {Âi
in}bi=1 and {Âi

out}bi=1, each of dimension n × n. For
each i, let Ci = Âi

out · (Âi
in)

−1 ∈ GLn(F2). Then Ci is simply a n-qubit linear reversible
transformation from Âi

in to Âi
out and hence can be implemented as a n-qubit CNOT circuit

in depth d(n), using the routine we consider as a blackbox input. The key efficiency of the
Block algorithm is that circuits corresponding to each Ci can be applied in parallel, so the
overall depth required to transform all Âi

in blocks into Âi
out blocks is d(n) (rather than e.g.

d(n+ p)). We can then apply the inverse circuits (Gi)† in parallel to map each Âi
out block to

the final desired Ai
out block. Putting the pieces together, we have

1. Initial CNOT circuit to map each Ai
in 7→ Âi

in : ⌈log(b)⌉ depth

2. Parallel CNOT circuits Ci to map each Âi
in 7→ Âi

out using input routine: d(n) depth

3. Final CNOT circuit (Gi)† to map Âi
out 7→ Ai

out : ⌈log(b)⌉ depth.

Summing these depths yields the overall depth in the claim. Putting these subcircuits
together (unifying the Ci into a block diagonal transformation, and then adding the initial
and final CNOT circuits) yields the desired CNOT circuit C.

3.2 Minimizing depth

At the other extreme, we now consider what depth reduction can be achieved under the
assumption of ample access to ancilla. The following simple result shows that when we have

9We actually have a stronger assumption on the structure of Ain than in [BBV+21], where it is assumed
only that A1

in is full-rank. Indeed, for us, A1
in = In and Ai

in = 0 for all i > 1. This conceptually simplifies
the spreading for input blocks. In this case it suffices to let the partial permutation P always be In. The
spreading process then just involves spreading each of the n data qubit parities stored in A1

in to the b − 1
other blocks exactly as in Figure 3: qubit j is spread to qubits {(i− 1) · n+ j}bi=2, for all 1 ≤ j ≤ n.
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at least p ·n ancilla, the parities can be synthesized simultaneously in roughly log(p ·n) depth.

Lemma 3.3. Given access to m = p · n ancilla, the p parities over n data qubits in
ParallelParities can be synthesized in ⌈log(p+ 1)⌉+ ⌈log n⌉ depth.

Proof. The claim follows from a simple two-step procedure, where both steps use the idea of
a binary tree CNOT structure for logarithmic depth spreading from Figure 3. To start, we
split the p ·n ancilla into p new registers of n ancilla each, with the jth register corresponding
conceptually to jth of the p parities.

(1) First, spread the data qubit register to each of these ancilla registers, done in parallel
for each of the data qubits. This can be done in ⌈log(p+ 1)⌉ total depth through the binary
tree CNOT structure for spreading, since there are p ancilla registers to which to spread, and
each qubit’s spreading is disjoint and hence executed completely in parallel across the data
qubits.

(2) Now, the p parities can be synthesized in parallel from their corresponding ancilla
registers. Each parity, involving at most n data qubits, can be synthesized in ⌈log(n)⌉ depth
again with a CNOT tree structure on its corresponding ancilla register (the opposite of
spreading, as discussed in Section 2).

This yields depth ⌈log(p+ 1)⌉+ ⌈log n⌉ overall.

Remark: In practice, the number of ancilla used can possibly be reduced by only spreading
the data qubits involved in each parity to the corresponding register. Each ancilla register’s
size will be equal to the weight wi ≤ n of the corresponding parity fi(x), rather than n,
resulting in

∑p
i=1wi ≤ np ancilla qubits used total. The depth is then ⌈log p⌉+⌈maxi log(wi)⌉.

Intuitively, without heavier hammers from quantum computing like measurement-based
quantum computing (MBQC),10 achieving depth logarithmic in n and p seems to be the best
we can do. A data qubit in general might need to be spread to p wires (for use in p parities);
since we can only double the number of qubits that we can reach in each layer with a 2-qubit
gate like a CNOT, this implies logarithmic depth in p. Similar reasoning for accumulating
a parity from n wires via CNOTs implies logarithmic depth in n. This reasoning suggests
that logarithmic depth (broadly speaking) is a minimal depth result in a standard model of
parity synthesis via CNOTs.

4 Our Approach: Controlling the Space-Depth Tradeoff

Sections 3.1 and 3.2 thus provide two existing parity synthesis options at opposite ends of
the spectrum in terms of space versus depth usage:

10In particular, [BKP09, BW24] together show that the “spreading” operation (i.e. the quantum
FanOut gate) can be implemented in constant depth in an MBQC model, which implies that the whole
ParallelParities procedure could be done in constant depth with MBQC (e.g. via an analogous procedure
to the proof of Lemma 3.3). MBQC-based results are generally much more resource-intensive in terms of
ancilla in practice, however.
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1. Lemma 3.1 uses only p ancilla and has depth da(n, p) := d(n) + 2⌈log( p
n
+ 1)⌉, where

d(n) upper bounds the depth of implementing an n-qubit linear reversible circuit (e.g.
d(n) = n+O(log2(n)) from MZ).

2. Lemma 3.3 uses np ancilla and reduces depth to db(n, p) := ⌈log(p+ 1)⌉+ ⌈log(n)⌉.11

However, these existing methods provide no finer-grained control of the space-depth
tradeoff to interpolate between these extremes. There is no clear way to use some intermediate
number of ancilla between p and np to obtain some commensurately intermediate depth
between da(n, p) and db(n, p). To the best of our knowledge, this gap has not been addressed
so far in the literature on quantum compilation and parity synthesis.

Our main contribution addresses this issue through a simple extension of the Block
algorithm from [BBV+21]. Given n data qubits and p parities, we provide a framework
for ParallelParities that allows the space-depth tradeoff to be controlled by a chosen
parameter c between 1 and n. This is presented formally in Theorem 4.1 and the associated
algorithm in its proof. Morally, our framework can be thought of as a second layer of
parallelization for parity synthesis: while theBlock algorithm already uses parallel applications
of a linear reversible synthesis routine, we now leverage parallel applications of the Block
algorithm itself. We execute this second layer of parallelization to a degree controlled by the
choice of c.

Like the Block algorithm, we express our bounds as a function of the depth required to
implement an n-qubit linear reversible circuit; our technique does not require any assumptions
about the routine used for this, which is treated as a blackbox input (indeed, because we use
Block itself as a blackbox in our framework). As previously mentioned, we make certain
divisibility assumptions regarding the parameter c in our main presentation and discussion
of the c-controlled synthesis here. We describe options for handling the general case without
divisibility assumptions in Appendix A.2.

Theorem 4.1 (Main result: c-controlled synthesis). Suppose we have p parities defined
over n qubits, and let c be any positive divisor of n such that n divides c · p. Let d(n) be an
upper bound on the depth required to implement an n-qubit linear reversible transformation.
Then ParallelParities can be implemented using m = c · p ancilla in depth at most

d(n, p; c) = d
(n
c

)
+ 2

⌈
log

(cp
n

+ 1
)⌉

+ ⌈log(c)⌉.

We can apply Theorem 4.1 with theMZ routine for implementing linear reversible circuits
to obtain a concrete bound.

Corollary 4.2. Suppose we have p parities defined over n qubits, and let c be any positive
divisor of n such that n divides c · p. Then ParallelParities can be implemented using
m = c · p ancilla in depth at most

d(n, p; c) =
(n
c
+ 2 log2

(n
c

)
+ 3 log

(n
c

))
+ 2

⌈
log

(cp
n

+ 1
)⌉

+ ⌈log(c)⌉.
11Note that indeed db(n, p) < da(n, p) as d(n) ≫ 3 log(n) in practice and asymptotically, due to the lower

bound of d(n) = Ω(n/ log(n)) [PMH03, JST+20].
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In comparison to Lemma 3.1 which uses p ancilla to obtain a depth dominated by the
d(n) term, Theorem 4.1 demonstrates a proportional tradeoff where using c times as many
ancilla reduces the dominant depth term to d(n

c
), albeit with some new overhead of smaller

logarithmic terms. When applied with the MZ algorithm (Corollary 3.2 vs. Corollary 4.2),
the dominant term is linear, and hence using c times as many ancilla reduces the dominant
term by a factor of c. Furthermore, Theorem 4.1 recovers the bounds from Corollary 3.2
and Lemma 3.3 (up to small constant factors) at the boundary choices of c = 1 and c = n
respectively.12

Proof of Theorem 4.1. We start with n data qubits, m = c · n ancilla, and p parities to
synthesize, for 1 ≤ c ≤ n such that c divides n and n divides c · p. We prove the theorem
constructively, by providing a synthesis algorithm that achieves the claimed depth. The crux
of the algorithm is simple: first split each parity into c parity pieces such that each piece
involves no more than n

c
qubits, and then run c instances of the Block algorithm from

[BBV+21] in parallel over the parity pieces rather than parities themselves.

Concretely, for all 1 ≤ i ≤ p we split parity fi(x) into c pieces {f (1)
i (x), . . . , f

(c)
i (x)}, such

that f
(j)
i (x) is a parity piece involving only qubits in the set x(j) = {x(j−1)·n

c
+1, ..., xj·n

c
}, for

1 ≤ j ≤ c, and fi(x) =
⊕c

j=1 f
(j)
i (x). Our main goal is then to synthesize the c · p parity

pieces {f (j)
i (x)}i,j on c ·p ancilla. Once we can do this, observe that the pieces {f (j)

i (x)}i,j can
be combined into the desired parities {fi(x)}1≤i≤p in ⌈log(c)⌉ total depth using an exactly
analogous procedure to Lemma 3.3. Each parity can be created from its c pieces using a tree
of CNOTs in ⌈log(c)⌉ depth, and this process can be executed in parallel for all parities since

the sets {f (j)
i (x)}1≤j≤c are stored disjointly (on separate ancilla) across i.

Now, the key observation is that the parity pieces {f (j)
i (x)}i,j can be easily synthesized

through c applications of the Block algorithm (Lemma 3.1) in parallel. Rather than viewing
the n data qubits together, we can simply treat them as c separate groups each of n

c
qubits,

namely x(1), . . . ,x(c). We similarly divide up our allocation of c · p ancilla into c groups of
p ancilla, one for each data qubit group. Indeed, the data qubit group x(j) is involved in
exactly p parity pieces {f (j)

i (x)}1≤i≤p. Thus we have c separate (qubit-disjoint) instances
of the ParallelParities problem, where the jth instance (1 ≤ j ≤ c) involves data

qubits x(j), parity pieces {f (j)
i (x)}1≤i≤p, and the jth group of p ancilla. In particular, each

of these ParallelParities instances has the following parameters: n
c
qubits, p parities,

and p ancilla. Then, by applying the Block algorithm (Lemma 3.1), each instance can be
implemented with a circuit of depth at most d

(
n
c

)
+ 2⌈log( cp

n
+ 1)⌉. Since these circuits are

implemented in parallel (over 1 ≤ j ≤ c), this is also the total depth of this step.

Thus there are just two components to the procedure: synthesizing the parity pieces in
depth d

(
n
c

)
+ 2⌈log( cp

n
+ 1)⌉, and then combining them in depth ⌈log(c)⌉. Summing these

depths together yields the claimed bound.

12Specifically, the c = 1 case exactly recovers the bound from Corollary 3.2, while the c = n case yields the
bound from Lemma 3.3 up to an extra multiplicative factor of 2.
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5 Discussion

In this project we formalize and study the ParallelParities problem, where p parities over
n data qubits must be synthesized onto ancilla such that they are present simultaneously.
This variant of parity network synthesis is motivated by recent approaches to synthesizing
Hamiltonian simulation circuits. We review two existing ideas for approaching this problem,
one that uses a minimal number of ancilla via [BBV+21]’s block extension algorithm (Lemma 3.1)
and one that minimizes depth with a logarithmic depth spreading approach using far more
ancilla (Lemma 3.3).

Given these existing approaches at opposite ends of the space vs. depth spectrum, our
main contribution is a framework that enables significantly more control over the space-depth
tradeoff in implementing ParallelParities (Theorem 4.1). The framework is parametrized
by a value c, controlling the degree of parallelization, that can be chosen depending on the
constraints and priorities of any particular application. In particular, this allows instance-
specific allocation of space and depth costs. The resulting bounds recover the guarantees of
Lemma 3.1 and Lemma 3.3 (up to a multiplicative factor of 2). Our framework is remarkably
simple: the main idea is simply to run Block in parallel on pieces of the parities, and the
proof fits on a page. We believe this theoretical simplicity will help to further augment the
practicality of this tool, making for easy implementation in software.

One next step for this work include empirical evaluation of this framework. It would be
useful to map out the specific depth obtained in a variety of parity synthesis applications—for
instance, to understand the practical cost of the logarithmic overhead, and to understand
which values of c seem to balance both space and depth costs best in practice. Another
clear direction for future work is integrating this framework back into the broader agenda of
measurement-based synthesis of Hamiltonian simulation circuits. Finally, a future direction of
theoretical interest is to formally develop corresponding lower bounds for depth over varying
numbers of ancilla. This would be useful in more thoroughly mapping out the space-depth
tradeoff, to understand if any further optimizations are possible.
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A Modified bounds without divisibility assumptions

A.1 For Block algorithm

The case where n does not divide p slightly complicates the Block algorithm. Instead of
having only n× n blocks, there will now have to be one (n+ r)× n block in the parity state
matrices, where r = p mod n. The resulting bound, which is the one given in [BBV+21], is
weaker but more general relative to Lemma 3.1.

Lemma A.1 ([BBV+21]). Let r = p mod n, and let d(n) be an upper bound on the depth
required to implement an n-qubit linear reversible transformation. Then a CNOT circuit C
that transforms Ain to Aout, i.e. C ∈ Fp×p

2 such that Aout = CAin, can be synthesized in
depth upper bounded by d(n+ r) + 2⌈log(⌊ p

n
⌋+ 1)⌉.

The proof of this bound is largely the same as the proof of Lemma 3.1. Let r = p mod n
and b = ⌊ p

n
⌋ + 1. We now define Qi = {(i − 1) · n + 1, . . . , i · n} for 1 ≤ i ≤ b − 1 while

Qb = {(b−1)·n+1, . . . , np}, such that A1
in, . . . , A

b−1
in ∈ Fn×n

2 while Ab
in ∈ F(n+r)×n

2 . The blocks
A1

out, . . . , A
b
out are defined analogously. The procedure for making each input and output block

full-rank remains the same; for the larger blocks Ab
in and Ab

out ∈ F(n+r)×n
2 , full-rank simply

means making the block rank n, where the first n rows form an invertible matrix.

For i < b, we can use the same transformation Ci = Âi
out · (Âi

in)
−1 ∈ GLn(F2) to map Âi

in

to Âi
out. The key difference comes from the case of Âb

in 7→ Âb
out. In this case, one can define

an invertible matrix Cb ∈ GLn+r(F2) — in particular, a linear reversible transformation now
over n + r qubits — such that CbÂ

i
in = Âi

out.
13 This (n + r)-qubit CNOT circuit can be

implemented in depth d(n+ r), and so the total depth from applying the CNOT circuits Ci,
1 ≤ i ≤ b, in parallel is equal to this dominant term of d(n + r). Thus the overall depth
achieved is d(n+ r) + 2⌈log(⌊ p

n
⌋+ 1)⌉.

A.2 For our controlled framework

As with the Block algorithm, removing divisbility assumptions adds some complexity to our
c-controlled synthesis framework. Here we present two straightforward options for handling
this additional overhead. The first leads to an increase in depth (while preserving the number
of ancilla required), and the second requires an increase in space (while preserving the depth
required). Indeed, these options align with our goal of providing control of the space-depth
tradeoff. Depending on the constraints of a particular instance in practice, one can pick
which additional cost to tolerate in cases where divisibility assumptions are not satisfied.

Concretely, we continue to consider n data qubits, p parities, and c as a positive divisor of
n, but now we no longer assume that n divides c ·p. Corollary A.2 states the increased depth
option for handling this general case, while Corollary A.3 states the increased space option.
The terms that change relative to Theorem 4.1 are boxed for emphasis. As in Theorem 4.1,

13The details are presented in [BBV+21] Section 5.
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we present these corollaries as a function of the depth of an input routine for n-qubit linear
reversible circuits. Corresponding concrete bounds can be derived easily by plugging in the
MZ bounds, as in Corollary 4.2.

Corollary A.2 (Handling divisibility with depth increase). Suppose we have p parities
defined over n qubits, and let c be a positive divisor of n. Let d(n) be an upper bound
on the depth required to implement an n-qubit linear reversible transformation. Let r =⌈(
p mod n

c

)
/⌊p/(n

c
)⌋
⌉
. Then ParallelParities can be implemented using m = c·p ancilla

in depth at most

d(n, p; c) = d
(n
c
+ r

)
+ 2

⌈
log

(cp
n

+ 1
)⌉

+ ⌈log(c)⌉.

In particular, d(n, p; c) ≤
�
�

�
�d

(
2 · n

c

)
+2

⌈
log

(
cp
n
+ 1

)⌉
+ ⌈log(c)⌉.

Proof of Corollary A.2. This option follows from applying the same idea used in the general
Block algorithm (Lemma A.1) to our c-instance parallel procedure, with a slight optimization.
We will still run c instances of the Block algorithm in parallel, split up over the n

c
-groups

of qubits x(1), . . . ,x(c). Consider the jth instance for some 1 ≤ j ≤ c, involving the parity
pieces {f (j)

i (x)}1≤i≤p. After grouping these pieces into complete groups of size n
c
to form

⌊p/(n
c
)⌋ blocks, we will have r0 := p mod n

c
parity pieces remaining. Rather than appending

all of these remainder pieces to one block as [BBV+21] do in the Block algorithm, we can
slightly optimize the parallelization by evenly distributing the remainder across all blocks.
This increases the number of rows in a given block by at most r :=

⌈
r0/⌊p/(nc )⌋

⌉
, to n

c
+ r.

The procedure for making these input and output blocks full-rank remains the same as in
the general Block algorithm; roughly, we can simply ignore the remainder rows that get
appended for the full-rank spreading. In addition, one can similarly find a linear reversible
transformation now over (at most) n

c
+ r qubits to transform the new input block to the new

output block as in the general case for Block. Thus the depth required for this stage of the
Block algorithm increases to d(n

c
+ r), while the rest of the procedure remains the same.

This row-distributing can be done for all instances running in parallel, and the final step of
combining the pieces remains the same. This yields the claimed depth bound. We remark
that in the worst case r can be up to n

c
, and so d(n

c
+ r) ≤ d(2 · n

c
), but for many parameter

values we expect r to be notably smaller than n
c
.

Corollary A.3 (Handling divisibility with space increase). Suppose we have p parities
defined over n qubits, and let c be a positive divisor of n. Let d(n) be an upper bound on the
depth required to implement an n-qubit linear reversible transformation. Then ParallelParities

can be implemented using
�� ��m = n · ⌈ cp

n
⌉ ancilla in depth at most

d(n, p; c) = d
(n
c

)
+ 2

⌈
log

(cp
n

+ 1
)⌉

+ ⌈log(c)⌉.

Relative to Theorem 4.1, notice that this option can lead to an extra space overhead of
up to n additional ancilla. The space bound is not particularly optimized and is very easy to
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achieve, by padding the number of parities to a multiple of n
c
. The main thing to understand

is why we need such padding at all. To achieve the same depth as Theorem 4.1, specifically
with the leading term of d

(
n
c

)
, we need to construct blocks of dimension (at most) n

c
× n

c

on which to run the Block algorithm. But now we may have a nonzero remainder r := (p
mod n

c
) < n

c
of parity pieces, yet each parity piece can in general involve all n

c
qubits from

its data qubit group. In particular the number of columns in the remainder parity block
in general cannot be reduced from n

c
, and hence we cannot somehow synthesize a block

of dimension less than n
c
× n

c
for the remainder parities. The reason we need to synthesize

square blocks, again, results from correspondence between linear reversible synthesis routines
and invertible Boolean matrices. The additional ancilla are thus used to pad the remainder
parities to obtain a block with n

c
rows.

Proof of Corollary A.3. Simply pad the number of parities to the nearest multiple of n
c
: let

p′ = n
c
· ⌈ cp

n
⌉ ≥ p. It does not matter what the parities added for padding are for the depth

bound; to minimize gates used we can simply consider these to be the null parities (i.e.
f(x) = 0⃗). With n qubits and p′ parities, Theorem 4.1 can now be applied as the divisibility
assumptions are satisfied, and it directly yields the claimed space and depth bounds.
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