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Background

Blackbox Reductions in Mechanism Design.

Say we have an algorithm A for Can we design an incentive-compatible mecha-
an optimization task, but agents nism M that uses A as a blackbox and achieves

might misreport input to A. (approximately) the same objective value?
Algorithm A Mechanism M
R | A Algorithm A | Value:
.. do ... ) A ’ — Vali ~ Val
.. return ... , - M 4
No Incentive guarantees Incentive compatible

We study such reductions from Bayesian mechanism design to Bayesian algorithm design,
where bidders have types drawn independently from some underlying distribution D.

Sample Complexity.
In an ideal model, we would have full knowledge of the bidders’ type distribution D.
In reality, we might only have a limited number of samples from D to work with.
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I Efficient sample complexity is a key desideratum for reduction problems:

Existing blackbox reduction procedures (e.g. [4, 2, 1]) all require an exponential number
of samples = question: can we improve to polynomial sample complexity?

This was posed as the main open problem of [3], for instance, and remains open, even
under additional structural assumptions on bidder valuations (e.g. additivity).

Model & Preliminaries

= One seller, n items, m (independent) bidders. Welfare maximizationY setting.
= Bidder k € [m] has type drawn from D), with supp(D™)) C [0, 1]".

= Bayesian incentive compatibility (BIC): Optimal for each bidder k to report
truthfully assuming all other bidders do so (i.e. they report t; ~ DY), Vj # k).

= Expected welfare: denoted Val4(D) for algorithm A, Val (D) for mechanism M.

Model assumptions:

- Additive valuations: for allocation Z and type t;, value vi(ty, ) = D icln Ti* ()i

- Independent items: D*) = x . D\") is a product distribution over items [n].

(

- Sample access to bidder distributions D), Vk € [m].

- Unrestricted query access to underlying algorithm A and its interim form Yk € |m)|.

Prior Work on Blackbox Reductions

= Hartline & Lucier (2010) initiate study in single-dimensional, welfare-max setting.
* Bei & Huang; Hartline et al. [4] (2011) extend to multi-dimensional setting.

= Daskalakis & Weinberg (2012) use similar techniques for related e=BIC to BIC
reduction for revenue makx.

= Dughmi et al. [2] (2020) use Bernoulli factories for reductions in fully-sample-based
(no interim form) welfare-max setting. Cai et al. [1] extend to revenue-max setting.

d\With the goal of extending to revenue maximization in ongoing work.

Problem Statement Our Mechanism: Three Key Techniques

Input: (1) Sample access to distribution D = xke[m]D(’@ over m bidders, each with [R—S matching upshot: Need exponentially-many surrogates to get good welfare. ]
additive valuations over n independent items. (2) Algorithm A (and its interim form).

| | 1. Sampling by Products.
Output: A BIC mechanism M with expected welfare Valy(D) at least Val4(D) — O(e). I\ How to obtain exponentially-many surrogates from only polynomially-many samples?

[g Use item independence: sample N times from marginals D;; take the N™ products.]

| Question: Can we leverage the additional structure on the input valuations to obtain |
improved (i.e. polynomial) sample complexity? | Foreachitemi € [n], draw S; = {yi 1, ¥i2, - -, ¥iv : ¥ij < Di,Vj}, where N = poly(n).
Then, take exponential-sized product set S as replicas/surrogates from D!

Remark: We focus on sample complexity. No claims about runtime.
S = XiemSi = 1(81,---,8,) : 8; € Si}, where |S| = N" = exp(n).

Main Result But the draws are not i.i.d. This leads to e.g. incentives issue when including bidder’s
marginals before taking products: bidder’s report now influences other replicas and
thus prices = potential incentive to misreport.

(Answer: Yes!) There is an exactly-BIC mechanism M that uses A and its interim
form as a blackbox and achieves expected welfare Val (D) > Val 4(D) — O(e) using

poly(n, m, %) samples from the bidders’ valuation distribution D.
2. Two-Phase Replica-Surrogate Procedure to Learn Approximate Prices.

I\ How to fix incentive issue of a bidder's reported marginals affecting surrogate prices?

Existing Technique: Replica-Surrogate Matching [g Decouple learning of prices from bidder report via separate “training” R-S phase.
]Ijeplica—sgjrrogate (R-S) rga:célching: creatte aBTce:paritle ‘l‘int.erfacel Iager” forhceach bidder Phase A: “Training” R-S matching. Phase B. “Real” R-S matching.
€ [m] that wraps around .A to guarantee BIC, while losing only O(e) welfare. = Draw training replicas R“Y, not = Draw real replicas R, including
= Surrogates: Draw some number of “surrogate types” from D). Match bidder k to including bidder’s report. bidder’s type before taking products.
some surrogate that will be inputted into A as a proxy, in place of ty.. = Learn prices for surrogates S in R-S = Use prices from Phase A to run R-S

matching with R as the replicas. matching on (R®), S) as final result.

= Replicas: Do the matching by drawing “replica types”, also from D) that will act as
make-believe “competitors” against bidder k for being matched to surrogates. Result: w.h.p., Phase A prices are approximately good for real Phase B matching.
Proof uses marginal-wise concentration and leverages additivity of valuations.

Mechanism M
Bidder 1 replicas Bidder & Bidder m . . . . .
| 3. Handling Small Errors/Failures with Discarding.
| e I\ How to handle low-probability failures and small error due to approximate prices?
© @ O o [g Discard allocations to remedy BIC in failure cases with only O(e) welfare loss.
By 4o e Issue: What to do when prices from Phase A are not good for Phase B, for some bidder
| | k? Bidder k's surrogate distribution wouldn't be D®), ruining BIC for all bidders j # k.
2 2l o ! Idea: If this happens, discard allocations for every other bidder j # k to fix incentives.
Algorithm A : : L e e :
= |f other bidders get () anyways, no incentive issues even if k's distribution looks off!
= Preserve BIC + lose only O(e) welfare assuming small-enough discard probability.
I
outcome o' = A(S1,82,...,Sky- - - Sm)-
f pricels p_?= p(s1, ..., 8m) (computed based on matching, A). Future Work
F . L .
(3,p) = M(&,.. ..t 1. Extend to revenue maximization (a la Cai et al. [1]).
Figure 1. Visualization of R-S matching. Adapted from Figure 1 in Cai et al. [1]. 2. Generalize to valuation classes beyond additive.

Interpretation: Replicas essentially induce pricing rules faced by bidder k for the surro- 3. Extend to fully-sample-based model via Bernoulli factories (2, 1)

gates, in a way that yields a mechanism M with the desired BIC and welfare properties:
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