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Background

Blackbox Reductions in Mechanism Design.

Say we have an algorithm A for

an optimization task, but agents

might misreport input to A.

Can we design an incentive-compatible mecha-

nismM that usesA as a blackbox and achieves

(approximately) the same objective value?

Algorithm A
for .............
... do .........
... return ...

Value: ValA

No incentive guarantees

MechanismM

Algorithm A

�
�
�
�
� Value:

ValM ≈ ValA

Incentive compatible

We study such reductions from Bayesianmechanism design to Bayesian algorithm design,

where bidders have types drawn independently from some underlying distribution D.

Sample Complexity.

In an ideal model, we would have full knowledge of the bidders’ type distribution D.

In reality, we might only have a limited number of samples from D to work with.

Ideal: full knowledge and access

D

0 1

Reality:

limited (e.g. poly)
sample access

{s1, s2, . . . , sN} ← D

0 1

Efficient sample complexity is a key desideratum for reduction problems:

Existing blackbox reduction procedures (e.g. [4, 2, 1]) all require an exponential number

of samples⇒ question: can we improve to polynomial sample complexity?

This was posed as the main open problem of [3], for instance, and remains open, even

under additional structural assumptions on bidder valuations (e.g. additivity).

Model & Preliminaries

One seller, n items, m (independent) bidders. Welfare maximizationa setting.

Bidder k ∈ [m] has type drawn from D(k), with supp(D(k)) ⊆ [0, 1]n.
Bayesian incentive compatibility (BIC): Optimal for each bidder k to report

truthfully assuming all other bidders do so (i.e. they report tj ∼ D(j), ∀j 6= k).

Expected welfare: denoted ValA(D) for algorithm A, ValM(D) for mechanismM.

Model assumptions:

– Additive valuations: for allocation ~x and type ~tk, value vk(~tk, ~x) =
∑

i∈[n] xi · (tk)i.

– Independent items: D(k) = ×i∈[n]D
(k)
i is a product distribution over items [n].

– Sample access to bidder distributions D(k), ∀k ∈ [m].
– Unrestricted query access to underlying algorithm A and its interim form ∀k ∈ [m].

PriorWork on Blackbox Reductions

Hartline & Lucier (2010) initiate study in single-dimensional, welfare-max setting.

Bei & Huang; Hartline et al. [4] (2011) extend to multi-dimensional setting.

Daskalakis & Weinberg (2012) use similar techniques for related ε=BIC to BIC

reduction for revenue max.

Dughmi et al. [2] (2020) use Bernoulli factories for reductions in fully-sample-based

(no interim form) welfare-max setting. Cai et al. [1] extend to revenue-max setting.

aWith the goal of extending to revenue maximization in ongoing work.

Problem Statement

Input: (1) Sample access to distribution D = ×k∈[m]D
(k) over m bidders, each with

additive valuations over n independent items. (2) Algorithm A (and its interim form).

Output: A BIC mechanismMwith expected welfare ValM(D) at least ValA(D)−O(ε).

Question: Canwe leverage the additional structure on the input valuations to obtain

improved (i.e. polynomial) sample complexity?

Remark: We focus on sample complexity. No claims about runtime.

Main Result

(Answer: Yes!) There is an exactly-BIC mechanismM that uses A and its interim

form as a blackbox and achieves expected welfare ValM(D) ≥ ValA(D)−O(ε) using
poly(n, m, 1

ε) samples from the bidders’ valuation distribution D.

Existing Technique: Replica-Surrogate Matching

Replica-surrogate (R-S) matching: create a separate “interface layer” for each bidder

k ∈ [m] that wraps around A to guarantee BIC, while losing only O(ε) welfare.

Surrogates: Draw some number of “surrogate types” from D(k). Match bidder k to

some surrogate that will be inputted into A as a proxy, in place of tk.

Replicas: Do the matching by drawing “replica types”, also from D(k), that will act as

make-believe “competitors” against bidder k for being matched to surrogates.

Figure 1. Visualization of R-S matching. Adapted from Figure 1 in Cai et al. [1].

Interpretation: Replicas essentially induce pricing rules faced by bidder k for the surro-

gates, in a way that yields a mechanismMwith the desired BIC and welfare properties:

1. BIC, via a key fact: if bidder k reports truthfully, the distribution of the surrogate

matched to bidder k is D(k). Can then show matching is incentive compatible.

2. Welfare approximation: ValM(D) ≈ ValA(D).
For good welfare, it turns out that we need to be able to match a large-enough

fraction of replicas to surrogates with similar types. In turn, this requires drawing

enough replicas and surrogates to cover the type space (supp(D(k))) sufficiently well.

How well? Exponential-sized cover⇒ exponentially-many replicas/surrogates.

Our Mechanism: Three Key Techniques

R-S matching upshot: Need exponentially-many surrogates to get good welfare.

1. Sampling by Products.

How to obtain exponentially-many surrogates from only polynomially-many samples?

Use item independence: sample N times from marginals Di; take the Nn products.

For each item i ∈ [n], draw Si = {yi,1, yi,2, . . . , yi,N : yi,j ← Di,∀j}, where N = poly(n).
Then, take exponential-sized product set S as replicas/surrogates from D!

S := ×i∈[n]Si = {(s1, . . . , sn) : si ∈ Si}, where |S| = Nn = exp(n).

But the draws are not i.i.d. This leads to e.g. incentives issue when including bidder’s

marginals before taking products: bidder’s report now influences other replicas and

thus prices⇒ potential incentive to misreport.

2. Two-Phase Replica-Surrogate Procedure to Learn Approximate Prices.

How to fix incentive issue of a bidder’s reported marginals affecting surrogate prices?

Decouple learning of prices from bidder report via separate “training” R-S phase.

Phase A: “Training” R-S matching.

Draw training replicas R(A), not

including bidder’s report.

Learn prices for surrogates S in R-S

matching with R(A) as the replicas.

Phase B. “Real” R-S matching.

Draw real replicas R(B), including

bidder’s type before taking products.

Use prices from Phase A to run R-S

matching on (R(B), S) as final result.

Result: w.h.p., Phase A prices are approximately good for real Phase B matching.

Proof uses marginal-wise concentration and leverages additivity of valuations.

3. Handling Small Errors/Failures with Discarding.

How to handle low-probability failures and small error due to approximate prices?

Discard allocations to remedy BIC in failure cases with only O(ε) welfare loss.

Issue: What to do when prices from Phase A are not good for Phase B, for some bidder

k? Bidder k’s surrogate distribution wouldn’t be D(k), ruining BIC for all bidders j 6= k.

Idea: If this happens, discard allocations for every other bidder j 6= k to fix incentives.

If other bidders get ∅ anyways, no incentive issues even if k’s distribution looks off!

⇒ Preserve BIC + lose only O(ε) welfare assuming small-enough discard probability.

FutureWork

1. Extend to revenue maximization (a la Cai et al. [1]).

2. Generalize to valuation classes beyond additive.

3. Extend to fully-sample-based model via Bernoulli factories [2, 1].
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