
Combinatorial Boolean Matrix Multiplication via Graph

Decomposition

Eduardo Fernandez, Arya Maheshwari, Andy Wang

December 15, 2023

Abstract

We review a recent breakthrough paper ([AFK+23]) that achieves a n3/2Ω(7√logn) combi-
natorial algorithm for Boolean Matrix Multiplication (BMM). This is the first combinatorial
algorithm that achieves a quasi-polynomial saving over the näıve O(n3) for Boolean matrix
multiplication (previous algorithms had only obtained polylog(n) savings). To provide further
context, we also give an overview of important previous combinatorial algorithms for BMM,
including the Four Russians’ algorithm of [ADKz70] (the first such algorithm with a subcu-
bic runtime) and the work of Bansal and Williams ([BW09]), which introduced the regularity
decomposition technique that [AFK+23] build on for their result.

1

Contents

1 Introduction 3

2 Background 4
2.1 Combinatorial algorithms . 4
2.2 Divide and conquer: The Four Russians’ Algorithm 5
2.3 Reduction to Triangle Detection . 6

3 Graph regularity decompositions 8
3.1 Szemerédi’s regularity lemma . 8
3.2 BMM via graph regularity in [BW09] . 9

4 A new graph decomposition in [AFK+23] 10
4.1 Preliminaries . 10
4.2 Grid regularity and matrix products . 11
4.3 Easy case: regular edge parts . 12
4.4 Enforcing ε-min-degree . 14
4.5 Enforcing regularity via “sifting” . 15

4.5.1 Derandomizing sifting via deterministic regularity approximation 18
4.6 Decomposing a single bipartite graph . 20
4.7 The full decomposition . 24
4.8 A state-of-the-art combinatorial algorithm for triangle detection 24

5 Conclusion 26

2

1 Introduction

Boolean Matrix Multiplication (BMM) is a widely studied problem in algorithm design, with exten-
sive research over the past five decades seeking to improve on the näıve O(n3) algorithm to multiply
two n× n Boolean matrices. Specifically, the problem of interest is computing the matrix product
AB of two Boolean matrices A,B ∈ {0, 1}n×n defined formally by

ABik =

n∨
j=1

Aij ∧Bjk. (1)

That is, the (i, k)-th element of the product AB is set to 1 iff there exists an index j where both the
i-th row of A and k-th column of B contain a 1. The importance of BMM in computer science is
underscored by its far-reaching applications that range from transitive closures [FM71, Fur70] and
triangle detection [IR77] in graphs to context-free grammar parsing [Val75] and all-pairs-shortest-
path problems [Sei95, GM97, DHZ00].

Compared to standard integer matrix multiplication, BMM is of particular interest from a
combinatorial perspective due to its natural interpretation in terms of graphs, phrased as follows.
Consider a tripartite graph G defined by vertex tripartition V = (X,Y, Z), such that each part has
n vertices and the matrices A and B are adjacency matrices that define the edges from X to Y
and Y to Z, respectively. Then, the BMM product C = AB represents the connectivity between
X and Z: in particular, it is the adjacency matrix for edges from X to Z if for each x ∈ X, z ∈ Z,
the edge e(x, z) is constructed iff x and z share a common neighbor in Y .

Interestingly, despite this combinatorial connection, the fastest current approach to BMM is
to just solve the problem as an integer matrix multiplication problem, using so-called algebraic
algorithms developed based on Strassen’s breakthrough subcubic algorithm from 1969 [Str69]. This
line of work is based on recursively multiplying small matrices over a ring and exploiting cancel-
lations to obtain runtime speedups, hence its characterization as “algebraic,” and has culminated
thus far in a Õ(n2.3716) bound due to [WXXZ23]. However, such procedures suffer from issues
related to practical performance, simplicity, and generalizability ([AFK+23]), so researchers have
also sought so-called “combinatorial algorithms” that instead aim to exploit the underlying combi-
natorial structure of BMM neglected in the algebraic approach to the problem. We will discuss in
more detail this class of algorithms and the motivation for their development starting in the next
section, but broadly, the landmark combinatorial algorithms have been characterized by divide-and-
conquer approaches [ADKz70, Cha14, Yu15] (see Section 2.2) or graph decomposition techniques
[BW09] (see Section 3.2). While these approaches have yielded polylog savings over cubic time, no
combinatorial algorithm has been able to achieve polynomial savings (i.e. a O(n3−ε) bound for any
ε > 0), leading to the following conjecture:

Conjecture 1.1. No “truly subcubic” combinatorial algorithm exists for BMM. That is, for any
ε > 0, no combinatorial algorithm for BMM runs in time O(n3−ε).

In this paper, we survey Abboud et. al’s recent breakthrough combinatorial algorithm for BMM
[AFK+23] which achieves a (combinatorial) state-of-the-art n3/2Ω(7

√
logn) bound via a novel graph

decomposition technique. While this still does not achieve a O(n3−ε) bound, it comes much closer

than before with the quasi-polynomial 2Ω(7
√
logn) speedup (versus previous polylog savings). We

state this main result in Theorem 1.1, which is the target that we will build toward in the remainder
of our paper (particularly in Section 4).

Theorem 1.1 (Main Result (Theorem 1.2 of [AFK+23])). There is a deterministic combinatorial

algorithm computing the Boolean product of two n× n matrices in time n3/2Ω(7
√
logn).

We will present the main ideas and techniques that drive this algorithm while also providing
more context (that is often omitted in [AFK+23]) to make this survey accessible to a reader without
background on the rather technical building blocks used in this new algorithm. As a small technical
note that will apply for the rest of the paper, we always assume a word-RAM model with word size
Θ(log n), and generally ignore polyloglog(n) factors in runtimes unless otherwise stated.

3

2 Background

To contextualize the result of [AFK+23], we begin by overviewing the motivation for combinatorial
algorithms (Section 2.1); the “Four Russians’ Algorithm” [ADKz70] and subsequent combinatorial
algorithms that it inspired (Section 2.2); and the connection between BMM and triangle detection
leveraged by the majority of combinatorial BMM algorithms, including [AFK+23] (Section 2.3).
We then cover background on graph regularity decompositions in Section 3 and their role in BMM
algorithms before presenting Abboud et. al’s algorithm in Section 4.

2.1 Combinatorial algorithms

As previously mentioned, combinatorial algorithms are generally characterized by their lack of the
algebraic cancellations used in Strassen’s algorithm and its successors, instead applying operations
more naturally grounded in the combinatorial structure underlying BMM. That said, there is cur-
rently no consensus on a common, precise definition of what counts as a “combinatorial” algorithm.
This is in part due to the difficulty in pinning down precise models that are flexible enough to
support the operations of existing combinatorial algorithms, yet are limited enough to exclude un-
realistic (e.g. quadratic-time) algorithms [DKS18]. For instance, in order to prove lower bounds
[DKS18] define specific versions of [Ang76]’s row-union model in which a combinatorial algorithm
is essentially permitted to take bitwise-ORs of partitions of matrix rows; while this model is able to
support the operations of the Four Russians’ Algorithm (discussed in Section 2.2), it is unable to
simulate more recent algorithms (e.g. [BW09, Cha14, Yu15, AFK+23] in particular) that are still
viewed as “combinatorial.”

Other works embrace a looser approach to designing combinatorial algorithm. In particular,
instead of specifying a precise model, [AFK+23] lay out three key limitations of Strassen-derived
algebraic algorithms and argue that the priority should be on first finding any other algorithm that
can break the subcubic barrier and then considering which limitations it improves upon or which
combinatorial notions it satisfies. The limitations they highlight are the following:

• Simplicity: Strassen’s algorithm famously exploits unintuitive algebraic cancellations that
provide little insight into the combinatorial behaviors of BMM; indeed, there is a whole line
of work interested in explaining why Strassen’s algorithm is even possible in the first place
[GM17].

• Practical Efficiency: Strassen-derived algebraic algorithms are often considered “galactic”
in the sense that although they improve upon asymptotic bounds for BMM, they are com-
pletely impractical due to excessive leading constant factors. The practicality of Strassen’s
algorithm itself is somewhat ambiguous—it has seen some use in practice [Lee01, HSHvdG16],
but the algorithm still suffers due to poor caching behavior [ABH10].

• Generalizability: Perhaps the most compelling theoretical motivation for interest in non-
algebraic techniques for BMM is that Strassen’s algorithm is not robust in generalizing to
BMM-related problems. For instance, triangle enumeration is not possible via Strassen’s
algorithm due to the algebraic cancellations it requires; on the other hand combinatorial
BMM algorithms such as that of [BW09] and [AFK+23] have been able to substantially
speed up triangle enumeration, and are in fact state-of-the-art, even compared to algebraic
techniques.

We remark that it is natural that a study like [DKS18] aiming to make progress on lower
bounds would adhere to a precise, restrictive model of combinatorial algorithms, while a study like
[AFK+23] aimed at an algorithm to improve the upper bound would first work from the loosest
viewpoint possible.

4

2.2 Divide and conquer: The Four Russians’ Algorithm

Here we briefly review the first subcubic combinatorial algorithm for BMM (the so-called Four
Russians’ algorithm), discovered by Arlazarov, Dinitz, Kronrod, and Faradzhev and published in
1970, shortly after Strassen’s 1969 breakthrough ([ADKz70]). We follow the presentation in [BW09]
and [Su21]. Note that the notation Av denotes Boolean matrix-vector multiplication, and u ∨ v
denotes the bitwise OR of bitvectors u, v. The algorithm is presented in Algorithm 1 below.

Algorithm 1 Four Russians’

1: procedure FourRussiansBMM(A,B)
2: ε← 0.1
3: Partition A into blocks Ai,j for i, j ∈

[
n

ε lgn

]
, each of size ε lg n× ε lg n.

4: for i, j ∈
[

n
ε lgn

]
do

5: Ti,j ← a lookup table such that for all v ∈ {0, 1}ε lgn, Ti,j [v] = Ai,jv.
6: end for
7: S ← a lookup table such that for all u, v ∈ {0, 1}ε lgn, S[u, v] = u ∨ v.
8: For each k ∈ [n], partition the k-th column of B into n

ε lgn parts of ε lg n consecutive entries.

9: Bk
j ← the j-th part of the k-th column of B (so Bk

j ∈ {0, 1}ε lgn).

10: for i ∈
[

n
ε lgn

]
do

11: for k ∈ [n] do
12: Q[i, k]← the all-zeros vector in {0, 1}ε lgn.

13: for j ∈
[

n
ε lgn

]
do

14: Q[i, k]← S(Q[i, k], Ti,j [B
k
j]).

15: end for
16: end for
17: end for
18: return Q.
19: end procedure

Although we index Q by n/(ε lg n) rows and n columns, note that each entry is a bitvector of
length ε lg n, so we freely identify Q with the corresponding n× n square matrix.

We claim that Algorithm 1 correctly computes the Boolean matrix product AB and runs in

time O
(

n3

log2 n

)
1.

Proof. Correctness. Upon termination of the algorithm, by construction, we have that for each
i ∈ [n/(ε lg n)] and k ∈ [n],

Q[i, k] =

n/(ε lgn)∨
j=1

Ai,jB
k
j .

It is not hard to see by standard block matrix multiplication that the i, k coordinate of the n×n
matrix corresponding to Q is precisely equal to 1, so the correctness is clear.

Runtime. Each matrix-vector multiplication in line 5 takes time ε2 log2 n (this is just näıve
multiplication of an ε lg n× ε lg n matrix by an ε lg n-length vector).

Since there are 2ε lgn = nε bitvectors of length ε lg n, and the for-loop in line 4 executes n2

ε2 lg2 n

times, the total runtime of the precomputation of the Ti,j ’s is

O

(
ε2 log2 n · nε · n2

ε2 lg2 n

)
= O(n2+ε) = O(n2.2).

1We should note that the original algorithm as presented by Arlazarov et al. only achieved logn savings over
cubic time, but this was later improved to log2 n by precomputation of the bitwise ORs (line 7). This idea is from
[Su21], but the improvement was already present in, for example, [BKM95]

5

By a similar counting argument, the runtime of precomputing table S (line 7) is

O((nε)2ε) = O(n2εε lg n) = O(n0.3).

Here we use that computing the bitwise OR of two bitvectors of length ε lg n requires time O(1) in
the word-RAM model with Θ(log n)-sized words.

Since we’ve already precomputed all the required values in lookup tables that can be accessed
in constant time, line 14 can be done in constant time. From the bounds in the three surrounding
for-loops, we get that the runtime of lines 10 to 17 is

O

(
n

ε lg n
n

n

ε lg n

)
= O

(
n3

log2 n

)
.

Combining these runtimes, we obtain that asymptotically, Algorithm 1 indeed runs in O
(

n3

log2 n

)
time, as desired. ■

Although we will not review their algorithms in detail here, following Bansal and Williams’
2009 breakthrough (see Section 3), Chan ([Cha14]) and Prof. Yu ([Yu15]) achieved log3 n and
log4 n savings, respectively, through more sophisticated divide-and-conquer techniques.

2.3 Reduction to Triangle Detection

Much of the work on combinatorial BMM algorithms in recent years has relied on a standard reduc-
tion of Boolean matrix multiplication to the Triangle Detection problem – the task of determining
whether or not a given input tripartite graph contains a triangle. We include the proof of this
reduction here for completeness.

For a comprehensive treatment of subcubic equivalences between various combinatorial problems
(all-pairs shortest paths, triangle detection, triangle listing, metric verification, matrix multiplica-
tion, among others) see the following paper by Williams and Vassilevska Williams: [WW10]. In
this section we adapt the coverage of the reduction in this paper and in the lecture notes [Su21].

First, we prove a useful lemma.

Lemma 1 (Lemma 4.1 in [WW10]). Suppose there is an algorithm that solves Triangle Detection in
time T (n) when given an arbitrary tripartite graph G = (X,Y, Z) on n vertices as input. Assume
further that T (n)/n is nondecreasing. Then there is an O(T (n))-time algorithm that returns a
triangle in G iff one exists.

Proof. This Lemma is cited as folklore in [WW10]. Since their recursive divide-and-conquer proof
technique is similar in spirit to the proof of our main Theorem 2.1, we include it here as warmup.

First, divide each of the parts of G into two subparts with cardinality as equal as possible:
(X(1), X(2)), (Y (1), Y (2)), and (Z(1), Z(2)). For ease of exposition, suppose |X|, |Y |, and |Z| are all
powers of 2 (to avoid issues with divisibility).

For each of the 8 triples (X(i1), Y (i2), Z(i3)), run the triangle-detecting algorithm recursively on
the graph induced by X(i1)∪Y (i2)∪Z(i3). If all of these executions return False (that is, all induced
subgraphs are triangle-free), return that the graph is triangle-free. Otherwise, recurse on a single
induced subgraph on which the algorithm returned True. The base case occurs when the algorithm
is called on a graph on three vertices, where we simply check if the three vertices form a triangle in
constant time and returns this vertex set if they do.

The correctness of the algorithm is clear: if a triangle exists inG, the triangle-detection algorithm
will return True on some triple of subparts, and we will recurse until we find the triangle and return
it; if G is triangle-free, then all calls to the triangle detection algorithm will return False.

Denote the runtime of the algorithm by F (n). Then F (n) satisfies the recurrence

F (n) = 8T (n) + F (n/2),

6

with F (k) = O(1) for k ≤ 3. Since we’re assuming that T (n) = ng(n) for some nondecreasing g, it
follows that

T (n) = 2
n

2
g(n) ≥ 2

n

2
g(n/2) = 2T (n/2).

But then from the Master Theorem2, it follows that F (n) = O(T (n)), as desired. ■

Now we prove the main result.

Theorem 2.1 (Theorem 4.2 in [WW10], Theorem 2.1 in [Su21]). Suppose there is a T (n)-time
algorithm for Triangle Detection on graphs on n vertices, where T (n)/n is nondecreasing. Then
there is an O(n2 T (n1/3))-time algorithm that computes the Boolean matrix product of A,B ∈
{0, 1}n×n.

Proof. Let G be a tripartite graph with vertex parts X,Y, Z, each of size n. Denote the i-th vertex
in each part by Xi, Yi, and Zi, respectively. Add an edge (Xi, Zk) for each i, k ∈ [n]. Also add
edges (Xi, Yj) for each i, j such that A(i, j) = 1, and similarly add edges (Yj , Zk) for each j, k such
that B(j, k) = 1.

By Lemma 1, there exists an O(T (n))-time algorithm that finds a triangle in G if there is one.
Observe that G has a triangle containing vertex Yj if and only if there exist i, j, k ∈ [n] such

that A(i, j) = B(j, k) = 1, which is equivalent to (AB)(i, k) = 1. Thus our strategy will be to use
the triangle-finding algorithm, combined with a divide-and-conquer technique, to determine if each
Yj is contained in a triangle. This will suffice to compute (AB)(i, k) for all i, k.

Let t be a parameter that we will set later. We will partition each of X, Y , and Z into t subparts
(each on n/t vertices), denoted X(1), . . . , X(t) in the case of X and similarly for Y and Z.

Initialize a matrix C ∈ {0, 1}n×n to be all zeros.
For each triple X(i1), Y (i2), Z(i3), execute the following procedure:

(1) Run the triangle-finding algorithm on the subgraph of G induced by X(i1) ∪ Y (i2) ∪ Z(i3).

(2) If this subgraph is triangle-free, continue to the next iteration (consider a new triple).

(3) Otherwise, suppose the triangle found in the subgraph is (Xi, Yj , Zk). Set C(i, k) = 1, delete
this triangle from the induced subgraph, and recurse on this new subgraph by returning to
step (1).

Return C.
First, we prove that the algorithm is correct – that is, C = AB. By the observation above, we

clearly have that whenever C(i, k) is set to 1 by the algorithm, we indeed have that (AB)(i, k) = 1.
All that is left to show is that if C(i, k) is not set to 1, then (AB)(i, k) = 0. Since we exhaustively
iterate over all triples of vertices in each of the subparts, if C(i, k) = 0 upon termination, we
conclude that there does not exist j ∈ [n] such that (Xi, Yj , Zk) is a triangle, and therefore indeed
(AB)(i, k) = 0, as desired.

For the runtime, note that whenever our triangle-finding algorithm returns that the subgraph is
triangle-free, we immediately move on to the next iteration of the main for-loop. Thus, the number
of times this happens is bounded by t3, the number of triples the algorithm iterates over. This
implies that the runtime contribution of these instances is O(t3 T (3n/t)).

On the other hand, whenever the triangle-finding algorithm returns a triangle (X(i), Y (j), Z(k)),
we set C(i, k) = 1 and delete this triangle from the subgraph. This means we set each C(i, k) to
1 at most once. Since there are n2 entries in C, the runtime contribution from these instances is
O(n2 T (3n/t)).

Thus, the total runtime of the algorithm is O(n2 T (3n/t) + t3 T (3n/t)). To optimize this, we
set t = 3n2/3, which yields a total runtime of O(n2 T (n1/3), as desired. ■

Corollary 2.1.1. An O
(

n3

2Ω(7√log n)

)
-time algorithm for Triangle Detection implies an algorithm

for BMM that also satisfies this asymptotic runtime guarantee.
2Specifically, Case 3 of Theorem 4.1 in the Third Edition of CLRS ([CLRS09])

7

3 Graph regularity decompositions

The use of graph regularity decompositions in BMM combinatorial algorithms was first introduced
by Bansal and Williams in [BW09]. These techniques offered the first substantial improvement in
many years for combinatorial BMM algorithms over the classic Four Russians algorithm. Broadly
speaking, notions of graph regularity measure the “randomness” of a graph in some sense: the more
regular a graph is, the more it behaves like a uniformly random graph does in expectation. Heuris-
tically, this is useful because the properties of random graphs are easy to analyze in expectation,
whereas a non-random graph can have arbitrary structures that complicate analyses. The remark-
able result of graph regularity decomposition theorems like Szemerédi’s regularity lemma is that any
graph admits a decomposition that partitions the graph into regular pieces, which can then be an-
alyzed using the properties of the relevant regularity notion. In this section we present Szemerédi’s
regularity lemma and its associated regularity notion to demonstrate some of the general themes
present in regularity decompositions. We then turn to the results of [BW09] that demonstrate the
utility of regularity decompositions in BMM, and discuss how these ideas compare with the novel
regularity decomposition that [AFK+23] introduces to achieve its main result.

3.1 Szemerédi’s regularity lemma

Szemerédi’s regularity lemma is a classic result that gives robust results on the regularity of arbitrary
graphs. It has become a standard tool in various graph theoretical applications [KSSS02], and has
yielded improvements on BMM bounds via the Triangle removal lemma [BW09]. Informally, it says
that a graph of any size can be partitioned into parts that behave “pseudo-randomly.” To make
this notion precise, we introduce the notion of ε-regularity. Consider an undirected, unweighted
graph G with vertices V (G) and edges E(G). For X,Y ⊂ V (G) (possibly intersecting), we define

eG(X,Y) :=
∣∣{(x, y) ∈ X × Y : xy ∈ E(G)

}∣∣
dG(X,Y) :=

eG(X,Y)

|X||Y |
.

Here dG(X,Y) can be viewed as the edge density between subsets X and Y . The notions of
ε-regularity used in Szemerédi’s regularity lemma are as follows.

Definition 3.1. For X,Y ⊂ V (G), the pair (X,Y) is ε-regular if for all A ⊂ X and B ⊂ Y such
that |A| ≥ ε|X| and |B| ≥ ε|Y |, ∣∣d(A,B)− d(X,Y)

∣∣ ≤ ε.

Definition 3.2. A partition P = {V1, . . . , Vk} of V (G) = V1 ⊔ · · · ⊔ Vk is ε-regular if∑
(i,j)∈[k]2

(Vi,Vj) not ε-regular

|Vi||Vj | ≤ ε|V (G)|2.

Observe that by definition, if a pair X,Y ⊂ V (G) is not ε-regular, then there must exist some
A ⊂ X and B ⊂ Y such that |A| ≥ ε|X| and |B| ≥ ε|Y | but |d(A,B) − d(X,Y)| > ε; we call
such a pair a “witness” of the irregularity of X and Y . These witnesses play key roles in regularity
theorems, particularly in terms of refining partitions to improve regularity, as we will see in the
Szemerédi regularity lemma.

Lemma 2 (Szemerédi’s regularity lemma). For all ε > 0, every graph has a ε-regular partition into

at most M(ε) parts, where M(ε) is a tower 22
..
.2

of height poly(1/ε).

Note that the size of the decomposition, M , is not dependent on the size of the graph, but instead
it only depends on the regularity parameter ε. The proof of Lemma 2 constructs a ε-regular partition
of an arbitrary graph by beginning with a trivial partition, and using witnesses of irregularity to

8

refine a partition until it becomes ε-regular (at which point there are no more witnesses). It can be
shown that the normalized mean square density, or “energy,” of the partition is contained in [0, 1]
but increases by poly(ε) each time the partition is refined by irregularity witnesses, so that this
process must terminate within some number of steps dependent on ε, yielding a ε-regular partition.

One of the main applications of Szemerédi’s regularity lemma is the graph removal lemma; the
Triangle removal lemma is a special case of this result that is pertinent to BMM.

Theorem 3.1 (Triangle removal lemma). For all ε > 0, every graph on n vertices with at most εn3

triangles can be made triangle-free by removing at most f(ε)n2 edges, where f(ε) = 1/(log∗ 1/ε)δ.

While Szemerédi’s regularity lemma provides powerful graph theoretical results, the sheer size
of the partition that it guarantees gives poor practical improvements in algorithms seeking to take
advantage of the regularity that the lemma guarantees. Moreover, the size of M(ε) is nearly tight
due to a result by Gowers, so in general, there is no hope of substantial improvements in the size
of the decomposition provided by the lemma.

Nonetheless, many of the ideas used in the Szemerédi regularity lemma are used more broadly
in regularity decompositions, including results in [BW09] and even in the new result of [AFK+23].
Indeed, the way in which irregularity witnesses generate the regularity decomposition, and the use
of density increment in Lemma 2 to terminate the decomposition process are very similar to the
main ideas of the regularity decomposition in [AFK+23]. Some of the results that the lemma has
proven also have potential for further optimization, even if the lemma itself does not, as we will see
briefly in the next section.

3.2 BMM via graph regularity in [BW09]

There are two main results in [BW09] for triangle detection, each of which relies on a different
regularity notion. The first result is due to the Triangle removal lemma (which in turn is due to
Szemerédi’s regularity lemma), and the second is due to a new, weaker notion of regularity.

a. An algorithmic version of the Triangle removal lemma (which, in turn, is due to Szemerédi’s
regularity lemma) yields a randomized combinatorial algorithm for BMM with a runtime of
O
(
n3 log(log∗ n)/(log2 n(log∗ n)δ)

)
for some δ > 0, and

b. Weak regularity (a notion used in the Frieze-Kannan regularity lemma in [FK99]) yields a
randomized combinatorial algorithm for BMM in time Ô(n3/ log2.25 n), where Ô ignores poly-
loglog factors.

The first result is a very modest (log∗ n)δ/ log log∗ n improvement over the Four Russians’ algorithm.
It makes use of the decomposition procedure used to prove Szemerédi’s regularity lemma (described
in Section 3.1) to algorithmically obtain an ε-regular partition of a graph, which in turn is applied
to the Triangle removal lemma to obtain a sparse (that is, O(n2) rather than O(n3)) set of edges
that can participate in triangles. This allows Bansal and Williams to obtain result (a), but it only
results in a small improvement since Szemerédi’s regularity lemma yields such poor bounds on f in
the Triangle removal lemma (see Lemma 3.1).

Bansal and Williams note, however, that improvements in the Triangle removal lemma could im-
prove the savings from this result. In fact, known lower bounds for the Triangle removal lemma are
still poorly developed, which leaves room for further improvements to the Triangle removal lemma.

In particular, as of [BW09], the best known lower bound on f(ε) in Lemma 3.1 is still 2−O(
√

log(1/ε)),

which, if achieved, could still imply a n3/2Θ(
√
logn) time BMM algorithm—this bound is even better

than the current state-of-the-art runtime of n3/2Ω(7
√
logn) achieved in [AFK+23].

Bansal and Williams also use another notion of regularity due to Frieze and Kannan, known as
weak regularity, to achieve better concrete bounds in result b. Compared to the Four Russians algo-
rithm, they achieve additional savings of log0.25 n (ignoring poly-loglog factors). This improvement
is possible because weak regularity admits a much more efficient decomposition than ε-regularity

9

in Szemerédi’s regularity lemma: Frieze and Kannan show that an arbitrary graph can be decom-
posed into an ε-pseudoregular (the analog of ε-regularity for weak regularity) partition of size 21/ε

2

[FK99], compared to the tower of 2’s of height poly(ε) in Szemerédi’s regularity lemma.
This demonstrates one of the key ideas in adapting regularity decomposition techniques for use

in algorithms: there is a fundamental tradeoff between the strength of the regularity guaranteed by
the decomposition and the practical effiency of the decomposition [AFK+23]. Stronger regularity
notions provide better guarantees but require larger decompositions, and inversely. For instance,
Szemerédi’s regularity lemma provides very strong (and tight) guarantees, but it is overkill for BMM,
since it is only used to achieve the Triangle removal lemma (which has tighter implementations
from other techniques). The key contribution of [AFK+23] is a new regularity decomposition that
better optimizes this tradeoff, based on a substantially different idea of regularity compared to
those of Szemerédi’s regularity lemma and Frieze-Kannan weak regularity known as grid regularity,
introduced by Kelley, Lovett, and Meka [KLM23]. Grid regularity is weaker than the notions used
in [BW09], but it is strong enough to be used in triangle detection and can be used with much
smaller decompositions.

4 A new graph decomposition in [AFK+23]

The main result we survey in this paper is [AFK+23], which achieves the first super-polylogarithmic
runtime savings over n3 for the Triangle Detection problem, and hence also a state-of-the-art com-
binatorial algorithm for BMM by 2.1.

4.1 Preliminaries

In this section we introduce some notation and conventions used throughout [AFK+23] (and hence
throughout the rest of this section). This material is entirely from Section 2.2 of [AFK+23].

Unless otherwise specified, X,Y , and Z are sets and A,B, and C are matrices (in R|X|×|Y |
≥0 ,

R|Y |×|Z|
≥0 , and R|X|×|Z|

≥0 , respectively).
AB denotes the standard matrix product, and A◦B denotes a slightly modified matrix product:

(A ◦B)(x, z) = Ey∈Y A(x, y)B(y, z) =
1

|Y |
∑
y∈Y

A(x, y)B(y, z) =
1

|Y |
(AB)(x, z).

We will very often freely identify boolean matrices A ∈ {0, 1}X×Y with the corresponding
bipartite graphs with parts X,Y and edges (x, y) present iff A(x, y) = 1. For X∗ ⊆ X and Y ∗ ⊆ Y ,
A[X∗, Y ∗] denotes the bipartite subgraph of A induced by the nodes in X∗ and Y ∗.

Unless otherwise specified, P and E assume uniform random sampling over objects of interest.
For example, the density of A is

E[A] = Ex∈X
y∈Y

A(x, y) =
1

|X||Y |
∑
x∈X
y∈Y

A(x, y).

That is, if x ∈ X is sampled uniformly, as is y ∈ Y (independently), then E[A] is the probability
that (x, y) is an edge in A.

We also define the relative degree of a node x ∈ X:

degA(x) = Ey∈Y A(x, y) =
1

|Y |
∑
y∈Y

A(x, y).

The definition of degA(y) for y ∈ Y is completely symmetric.
In other words, out of all possible edges (x, y) that could exist in the bipartite graph A, a

degA(x) fraction of them are actually present.

10

A is ε-left-min-degree (or just ε-min-degree) if minx∈X degA(x) ≥ (1 − ε)E[A] . Intuitively, A
satisfies this condition if no node in X has a relative degree that is “too low”, compared to the
overall density of the entire graph.

Finally, for α, ε, δ > 0, we say that A is (α, ε, δ)-uniform if

P(x,y)∈X×Y [(1− ε)α ≤ A(x, y) ≤ (1 + ε)α] ≥ 1− δ.

In other words, A satisfies this uniformity condition if at least a 1 − δ fraction of the entries
in A lie between (1 − ε)α and (1 + ε)α. The α parameter seems superfluous for Boolean matrices
whose values are in {0, 1}, but we use this notion of uniformity in connection with Theorem 4.1,
which applies to general matrices with nonnegative entries, so we keep the parameters as they are.

4.2 Grid regularity and matrix products

[AFK+23] builds on the work of [BW09] in that the triangle detection algorithm the authors present
relies on a regularity decomposition of a graph. A key innovation in [AFK+23] is using grid regularity
– rather than Szemerédi regularity or Frieze-Kannan regularity – to guide their decomposition . In
this section we develop this notion of regularity and connect it to matrix products. This material
is from Sections 2.3 and 2.4 of [AFK+23], with some results from [KLM23].

To start, given k, ℓ ≥ 1, we define the (k, ℓ)-grid norm3 of a nonnegative matrix A ∈ RX×Y
≥0 :

∥A∥U(k,ℓ) =

Ex1,...,xk∈X
y1,...,yℓ∈Y

∏
i∈[k]
j∈[ℓ]

A(xi, yj)


1
kℓ

.

Note that for a fixed k-tuple x1, . . . , xk ∈ X we can write

Ey1,...,yℓ

∏
i∈[k],j∈[ℓ]

A(xi, yj) = Ey1
. . .Eyℓ

∏
i∈[k],j∈[ℓ]

A(xi, yj) =

Ey∈Y

∏
i∈[k]

A(xi, y)

ℓ

.

Thus, raising the original (k, ℓ)-norm to the kℓ power, we can write

∥A∥kℓU(k,ℓ) = Ex1,...,xk∈X

Ey∈Y

∏
i∈[k]

A(xi, y)

ℓ

,

which will be useful for us later.
For the rest of this section, suppose A is a Boolean matrix. Then note that for a given pair of

tuples x1, . . . , xk and y1, . . . , yℓ, each with distinct elements, the product
∏

i,j A(xi, yj) is 1 if and
only if the subgraph induced by these vertices is a (k, ℓ)-biclique – that is, (xi, yj) is an edge for all
i, j. Thus, we can roughly think of the grid norm as counting the number of (k, ℓ)-bicliques that
occur as a subgraph of A, followed by some normalization, with the technicality that some of the
nodes of each biclique might coincide.

Observe that from comparing definitions, we have ∥A∥U(1,1) = E[A], the density of A. Moreover,

across all graphs A, clearly ∥A∥U(|X|,|Y |) is maximized when A = K|X|,|Y |, the complete biclique

on vertex parts X,Y . In this case, ∥A∥U(|X|,|Y |) = 1, since A(x, y) = 1 for all (x, y) ∈ X × Y .
We also have the following useful lemma:

Lemma 3 (Claim 4.2 in [KLM23]). If ℓ ≤ ℓ′, then for any A ∈ RX×Y
≥0 ,

∥A∥U(k,ℓ) ≤ ∥A∥U(k,ℓ′) .
3Note that despite the terminology used, the grid norm is not necessarily a norm (i.e., it doesn’t necessarily

satisfy the required triangle inequality).

11

We omit the proof, but note that by symmetry, the analogous claim that whenever k ≤ k′ we
have ∥A∥U(k,ℓ) ≤ ∥A∥U(k′,ℓ) is also true.

Combining the Lemma and the observation above, we get that for any graph A and any k, ℓ ∈ [n],

E[A] ≤ ∥A∥U(k,ℓ) ≤ 1.

To see why it is reasonable to interpret the grid norm as a measure of pseudo-randomness,
consider the following: For concreteness, take n = |X| = |Y | = 20 and k = ℓ = 4.

Let A ∈ {0, 1}X×Y be a Boolean matrix such that the n/2×n/2 top-left block is all 1’s, but all

other entries are zero. Then E[A] = 1/4, and the number of (k, ℓ)-bicliques is exactly
(
10
4

)2
> 44,000.

Let B ∈ {0, 1}X×Y be a purely random bipartite graph, where each edge (x, y) is present
independently and with probability p = E[A] = 1/4. Then note that in expectation, the density of
B is clearly equal to E[A] and the number of (k, ℓ)-bicliques in B is

pkℓ
(
n

k

)(
n

ℓ

)
=

(
1

4

)16 (
20

4

)2

< 1.

Of course, this is only a specially constructed example and we don’t take into account bicliques
with repeated nodes (which the original definition of the (k, ℓ) grid norm does consider) or nor-
malization (exponentiating to 1/(kℓ)), but this case still illustrates an important general takeaway:
a highly structured graph (like A above) will tend to have a larger grid norm than a random-like
graph (like B), even if both graphs have the same edge density.

With this motivation in mind, we say that A is (ε, k, ℓ)-regular if its (k, ℓ)-grid norm is not too
large relative to its density – that is, if

∥A∥U(k,ℓ) ≤ (1 + ε)E[A].

Grid norms turn out to be extremely useful due to a recent result by Kelley, Lovett and Meka
([KLM23]) that links the regularity of two graphs to the product of their corresponding matrices:

Theorem 4.1 (Theorem 2.1 in [AFK+23], Lemma 4.8 in [KLM23]). Let A ∈ RX×Y
≥0 and B ∈ RY×Z

≥0 ,

let ε ∈ (0, 1
80), let d ≥ 2/ε and assume that

(a) A and BT are (ε, 2, d)-regular, and

(b) A and BT are ε-min-degree.

Then A ◦B is (E[A]E[B], 80ε, 2−εd/2)-uniform.

We omit the proof here, which involves a combination of analytic and probabilistic arguments.
When A,B ∈ {0, 1}n×n, we can very roughly think of Theorem 4.1 as saying that if A and B
behave pseudo-randomly (i.e. they satisfy the grid-regularity and min-degree conditions), then
a large fraction of the entries in the product matrix AB are 1’s (a consequence of satisfying the
uniformity condition). This structural result is the starting point of the decomposition that is the
focus of the rest of the paper.

4.3 Easy case: regular edge parts

In this section we connect the ideas in Section 4.2 to the Triangle Detection problem in order to
showcase the power of regularity. Suppose A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , and C ∈ {0, 1}X×Z ,
and our task is to detect a triangle in the tripartite graph G with vertex parts (X,Y, Z) in subcubic
time. For this section, we assume a “best case” scenario where A and B satisfy strong regularity
properties. More specifically, we assume they satisfy the conditions in Theorem 4.1: Let ε = 1

160
and d ≥ 2/ε. Then we assume that

(1) A and BT are (ε, 2, d)-regular and

12

(2) A and BT are ε-min-degree.

Note that there is a triangle in G if there are vertices x ∈ X, y ∈ Y, z ∈ Z such that A(x, z) =
B(y, z) = C(x, z) = 1. In terms of Boolean matrix multiplication, this is equivalent to the existence
of a pair of indices (i, k) such that (AB)(i, k) = C(i, k) = 1.

First, if either A or B is the zero matrix (which we can check in O(n2) time), return False –
clearly there is no triangle in G in this case.

We split the triangle detection task into two cases.
First, suppose C is sparse – that is, E[C] ≤ 2−εd/2. In this case our strategy is straightforward

brute force: enumerate all n2

2O(d) edges in C and iterate over all n nodes in Y to check in constant

time for each node if the C edge is part of a triangle. This gives an n3/2O(d) algorithm.
For the remaining case, suppose C is dense, so E[C] > 2−εd/2. In this case, we can just output

True – that is, G does contain a triangle.
To see why, note that by Theorem 4.1 properties (1) and (2) together guarantee that A ◦ B is

(E[A]E[B], 1
2 , 2

−εd/2)-uniform. Unpacking the definition of uniformity from Section 4.1, this says

that at least a 1− 2−εd/2-fraction of the entries in A ◦B lie in the interval [12E[A]E[B], 3
2E[A]E[B]].

In particular, this means that less than a 2−εd/2-fraction of the entries in A ◦ B are 0 (by the
assumption that neither E[A] nor E[B] are 0).

Since each entry in A ◦ B is just a positive scaling of the corresponding entry in AB, we get
that E[AB] ≥ 1 − 2−εd/2. Comparing E[AB] and E[C], the Pigeonhole Principle implies that AB
and C must have a nonzero entry in common, which finishes the proof.

Of course, in general, A and B are arbitrary matrices, which might not satisfy any nice regu-
larity properties. The authors in [AFK+23] circumvent this issue by proving that it is possible to
simultaneously decompose A and B into matrices that satisfy strong-enough regularity properties,
and to do so in an efficient manner. Thus, our task for the remainder of Section 4 is to explain how
it is possible to execute this decomposition in a way that yields super-polylogarithmic savings for
Triangle Detection.

We defer discussion of the full decomposition of A and B to Section 4.7. To streamline the
presentation, in Sections 4.4 through 4.6 we review the analogous decomposition of a single bipartite
graph A, which we formally state now:

Theorem 4.2 (Theorem 3.3 in [AFK+23]). Let A ∈ {0, 1}X×Y , ε ∈ (0, 1), and d ≥ 1. Then there
is an algorithm ADecomposition(X,Y,A, ε, d) computing tuples {(Xℓ, Yℓ, Aℓ)}Lℓ=1 with Xℓ ⊆ X,
Yℓ ⊆ Y , and Aℓ ∈ {0, 1}Xℓ×Yℓ such that:

(1) A =
∑L

ℓ=1 Aℓ.

(2) For all ℓ ∈ [L], either

(i) E[Aℓ] ≤ 2−d, or

(ii) Aℓ is (ε, 2, d)-regular and ε-min-degree.

(3)
∑L

ℓ=1 |Xℓ||Yℓ| ≤ (d+ 2)|X||Y |.

(4) L ≤ exp(d3poly(ε−1) and minℓ |Xℓ||Yℓ| ≥ exp(−d3poly(ε−1))|X||Y |.

Moreover, this algorithm is deterministic and runs in time n2exp(d3poly(ε−1)) (where here
n = |X|+ |Y |).

Focusing on properties (1) and (2) for now, we will intuitively seek to decompose A into disjoint
parts, each of which is either sparse or satisfies the conditions of our workhorse Theorem 4.1. Just
like in the “easy case” explored above, eventually (in the full decomposition of Section 4.7) in the
sparse case we will be able to use brute force, and in the regular case we will exploit uniformity.
Thus the next two sections are devoted to explaining how we find large enough subgraphs that are
either sparse or both ε-min-degree (Section 4.4) and (ε, 2, d)-regular (Section 4.5).

13

4.4 Enforcing ε-min-degree

We start with the algorithm that will enable us to obtain a large ε-min-degree subgraph from a given
graph A ∈ {0, 1}X×Y . The key idea behind both this algorithm and the one for enforcing regularity
(Section 4.5) is that we will find a large subgraph of A′ ⊆ A that either (a) directly satisfies our
desired property (whether ε-min-degree or (ε, k, ℓ)-regularity), or otherwise (b) has a considerably
increased density, i.e. a density increment. The density increment case does not ultimately pose a
problem for achieving the desired property because — as we will see more formally when applying
these subroutines in Section 4.6 — the number of times such an increment can occur is limited due
to bounds on the density. This crucial fact means that we can simply recurse on the higher-density
subgraph A′ until we inevitably exit in case (a) as desired. We will see that the density increments
are indeed sufficient to bound the depth of this recursion and ensure that the final subgraph is still
large enough for our purposes.

We first precisely state the result that we can find a large subgraph that is either ε-min-degree
or a density increment via (one call to) such an algorithm.

Lemma 4. (Lemma 5.1 in [AFK+23]) Let A ∈ {0, 1}X×Y and let 0 < ε, γ < 1. There is a
deterministic O(|X||Y |)-time algorithm MinDegree(X,Y,A, ε, γ) that computes a subset X ′ ⊂ X
(inducing the subgraph A′ = A[X ′, Y]) such that |X ′| ≥ ⌊(1− γ)|X|⌋, and either

(1) A′ is ε-min-degree and E[A′] ≥ E[A], or

(2) E[A′] ≥ (1 + γε)E[A] (a density increment).

The MinDegree algorithm that accomplishes this task is presented in Algorithm 2, slightly
expanded from the version in [AFK+23] (Algorithm 5.1) to include some additional details for
concreteness.4 In words, given A ∈ {0, 1}X×Y , the algorithm iteratively computes a subset X ′ ⊆ X
from X (inducing the subgraph A′ = A[X ′, Y]) by iteratively removing vertices x from X ′ in
increasing order of degA(x). The algorithm terminates when the size of the current X ′ is no larger
than (1− γ)|X| or when the next x (in the sorted order) satisfies degA′(x) ≥ (1− ε)E[A′], at which
point we return the set X ′.

Algorithm 2 Find ε-min-degree or density increment subgraph

1: procedure MinDegree(X,Y,A, ε, γ)
2: Let X ′ ← X, A′ ← A.
3: Precompute degA(x) for each x ∈ X ′ and sort X ′ in increasing order of degA(x)
4: Let x← head (first element) of X ′

5: while |X ′| > (1− γ)|X| and degA′(x) < (1− ε)E[A′] do
6: Update X ′ ← X ′ \ {x}, A′ ← A[X ′, Y]
7: x← head of X ′

8: end while
9: return X ′

10: end procedure

The core reasons behind this algorithm’s correctness come from the definitions of density E[A],
(relative) degree degA(x), and how these quantities are related. We distill this into three key facts
that provide the foundation for our proof of the lemma.

Fact 1. For any A′ = A[X ′, Y] induced by some X ′ ⊂ X, degA′(x) = degA(x), for any x ∈ X ′.
Fact 2. E[A′] = 1

|X′|
∑

x∈X′ degA′(x). Hence removing some x from X ′ s.t. degA′(x) < E[A′]

will cause an increase in E[A′].

Fact 3. For X = X1 ⊔X2 and A1 := A[X1, Y], A2 := A[X2, Y]: E[A] = |X1|
|X| E[A1] +

|X2|
|X| E[A2].

4The two presentations are equivalent because to check if there exists some node x ∈ X′ with degA′ (x) smaller
than some threshold (as in [AFK+23]), it suffices to check the node with the smallest degA(x) value (as in our
algorithm), since degA(x) = degA′ (x) (see our “Fact 1”). Indeed the runtime analysis in [AFK+23] relies on
implementing our presentation of the algorithm.

14

Fact 1 holds due to the definition degA(x) =
1

|Y |
∑

y∈Y A(x, y), since the set Y does not change

for the subgraph (submatrix) A′ = A[X ′, Y]. Fact 2 characterizes the density of A as an average
over x ∈ X of the degrees degA(x) (and then applying this to A′), which follows from the definitions
of density and degree; the second part of Fact 2 in turn follows from this characterization. Finally,
Fact 3 states that for a partition A = A1 ⊔ A2, the density of E[A] can be written as the size-
weighted average of the densities E[A1] and E[A2]; this can be derived from Fact 1 and 2 or directly
from the definition of density. We will see the utility of these facts in the proof below.

Proof of Lemma. Runtime: It is easy to see that we can precompute degA(x) for each x ∈ X ′

(where X ′ is initialized to X) and then sort X ′ overall in time O(|X||Y |). Then, observe that the
loop repeats at most O(|X|) times since it removes a vertex from X ′ every time. Furthermore, it
takes constant work in each iteration to check degA′(x) = degA(x) < (1− ε)E[A′] (using Fact 1 and
updating E[A′] using the first part of Fact 2) and to remove x from X ′ in the body of the loop (if
we store X ′ with an appropriate data structure e.g. queue after sorting). Thus the overall runtime
of MinDegree is O(|X||Y |).

Correctness: First observe that the returned X ′ always satisfies |X ′| ≥ ⌊(1 − γ)|X|⌋: either
the loop condition |X ′| > (1−γ)|X| always holds, or the loop terminates in the first iteration where
|X ′| ≤ (1− γ)|X|, in which case the claim |X ′| ≥ ⌊(1− γ)|X|⌋ follows from noticing that |X ′| only
decreases by 1 in every iteration of the loop.

We now consider the two cases in which we terminate the loop. We complete the proof by
showing that in Case 1 below, we satisfy Case 1 of the lemma (ε-min-degree and E[A′] ≥ E[A]),
and similarly in Case 2 below we satisfy Case 2 of the lemma (density increment).

Case 1: degA′(x) ≥ (1− ε)E[A′]. Observe that this termination condition directly implies A′ is
ε-min-degree by definition, where we use Fact 1 and the fact that we sort X ′ in increasing order of
degA(x) = degA′(x) (so all remaining x ∈ X ′ satisfy degA′(x) ≥ (1− ε)E[A′]). Meanwhile, we can
also conclude E[A′] ≥ E[A] by repeatedly applying the second part of Fact 2 to each step where we
update X ′ by removal.

Case 2: |X ′| ≤ (1− γ)|X|. Letting X̂ = X \X ′, this condition implies that |X̂| ≥ γ|X|. The

intuition for this case is that we have removed sufficiently many low-degree vertices (which form X̂)
to guarantee, applying Fact 3, that the remaining part X ′ must have a higher-than-average density.

Formally, let Â = A[X̂, Y]. Fact 2 implies that E[A′] only increases throughout the algorithm,
and hence any x removed in the algorithm satisfies degÂ(x) = degA′(x) < (1 − ε)E[A′] for the

final A′ (note that we have used Fact 1 here). Thus, applying Fact 2, E[Â] = 1
|X̂|

∑
x∈X̂ degÂ(x) <

(1− ε)E[A′], and so

E[A] =
|X ′|
|X|

E[A′] +
|X̂|
|X|

E[Â] by Fact 3

≤ |X
′|

|X|
E[A′] +

|X̂|
|X|

(1− ε)E[A′]

= E[A′](1− ε
|X̂|
|X|

) since
|X ′|
|X|

+
|X̂|
|X|

= 1

≤ E[A′](1− γε)

⇒ E[A′] ≥ (1 + γε)E[A] by dividing by (1− γε)

where the last statement holds because 0 < γε < 1 and so 1
1−γε > 1 + γε. ■

4.5 Enforcing regularity via “sifting”

In order to enforce regularity in the decomposition process, we rely on a “sifting” algorithm to
either certify that a given graph is regular, or else find a denser subgraph to recurse upon to find
a regular subgraph. As in Section 4.4, this density increment allows us to bound the number or
recursions necessary to achieve regularity. The authors of [KLM23] give a proof of existence for

15

the sifting theorem that yields a randomized algorithm for sifting, but in order to derandomize the
sifting algorithm, [AFK+23] uses a different approach. Formally, their main result is as follows.

Theorem 4.3 (Sifting, Theorem 3.2 in [AFK+23]). Let A ∈ {0, 1}X×Y , let ε ∈ (0, 1) and k, ℓ ≥ 1.
There is an algorithm Sift(X,Y,A, ε, k, ℓ) that returns either

a. “regular,” in which case A is (ε, k, ℓ)-regular, or

b. sets X ′ ⊆ X,Y ′ ⊆ Y with |X ′||Y ′| ≥ ε
16 · E[A]kℓ · |X||Y | and E[A[X ′, Y ′]] ≥ (1 + ε

2)E[A].

The algorithm is determinstic and runs in time n2 · (εE[A]/k)−O(kℓ(k+ℓ)), where n = |X|+ |Y |.

The role that the sets X ′, Y ′ play in this theorem are analogous to the “witnesses” of irregularity
seen in the notion of ε-regularity used in Szemerédi’s regularity lemma; indeed, if A is not (ε, k, ℓ)-
regular, then we are guaranteed to have sets X ′, Y ′ with unusually high density, and the theorem
promises an algorithm to find these sets. Similarly to Szemerédi’s regularity decomposition, the
witnesses in the sifting algorithm are used to refine the search for a regular subgraph. Note,
however, that the algorithm may return some “false negatives”; that is, even if A is (ε, k, ℓ)-regular,
the algorithm may still find and return X ′, Y ′ with a density increment. This is not an issue,
though, since the density increment still guarantees that regularity can be enforced within a limited
number of recursions.

The main tool that [AFK+23] uses to achieve the algorithm in Theorem 4.3 is the following
recursive sifting lemma that, given an irregular graph, either gives (a) evidence of irregularity in
the form of a large subset of high-degree vertices, or provides (b) a subgraph that demonstrates
“stronger” irregularity. The first case allows the algorithm to report X ′, Y ′ that satisfy Theorem
4.3; the second case gives the algorithm a subgraph in which it can continue searching for X ′, Y ′.
In the lemma and following discussion, we define Yx := {y ∈ Y : A(x, y) = 1} and Ax = A[X,Yx].

Lemma 5 (Recursive Sifting, Lemma 4.2 in [AFK+23]). Let A ∈ {0, 1}X×Y , let δ, ε > 0 and
k, ℓ ≥ 1 and assume that ∥A∥U(k,ℓ) ≥ (1 + ε)δ. Then one of the following two cases applies:

a.
∣∣{x ∈ X : degA(x) ≥ δ}

∣∣ ≥ ε
2 · δ

kℓ · |X|, or

b. k > 1 and there is some x ∈ X such that:

• degA(x) ≥ δk, and

• ∥Ax∥U(k−1,ℓ) ≥ (1 + ε)δ.

The irregularity in the subgraph Ax promised by the lemma is stronger in the sense that it
demonstrates the same irregularity as A, except with respect to the U(k − 1, ℓ) grid norm rather
than the U(k, ℓ) grid norm, which is strictly harder (see Lemma 3). When k = 1, the lemma
guarantees that case (a) applies. Note that, just as in Theorem 4.3, neither case actually proves
irregularity.

This lemma is proved in [AFK+23] by showing that for k > 1, if case (a) does not apply, then a
randomly chosen vertex in X satisfies the properties of x in case (b) with nonzero probability. For
the sake of brevity, we omit the details here, but the lemma is almost immediate from the definition
of the grid norm. The parameter δ in Lemma 5 is commonly just E[A], possibly scaled by some
factor; we use δ for the sake of generality and presentation. We will discuss the utility of this lemma
more in the proof of Theorem 4.3.

To make use of Lemma 5, we need one final tool to approximately calculate the grid norm of
Ax for vertices x ∈ X, given by Lemma 6. If case (b) of Lemma 5 applies, this grid approximation
tool will allow us to algorithmically identify an x ∈ X that (approximately) satisfies the promised
properties. The main complexity in derandomizing the sifting algorithm lies in making this grid
norm approximation algorithm deterministic. We defer details of Lemma 6 to Section 4.5.1.

16

Lemma 6 (Deterministic regularity approximation, Lemma 4.3 in [AFK+23]). Let A ∈ {0, 1}X×Y ,
let α > 0 and k, ℓ ≥ 1. There is a determinstic algorithm that computes, for all x ∈ X, an
approximation vx satisfying that vx = ∥Ax∥U(k,ℓ)±(α/degA(x)

1
k), and runs in time n2·α−O(kℓ(k+ℓ)),

where n = |X|+ |Y |.

We now turn to the proof of Theorem 4.3.

Proof. (Theorem 4.3) We will show that the Sift procedure in algorithm 3 accomplishes the task of

Algorithm 3 Sift a graph (Algorithm 4.1 in [AFK+23])

1: procedure Sift’(X,Y,A, δ, ε, k, ℓ)
2: Let X ′ = {x ∈ X : degA(x) ≥ δ}.
3: if |X ′| ≥ ε

2 · δ
kℓ · |X| then

4: return X ′, Y
5: end if
6: if k = 1 then
7: return “regular”
8: else
9: Compute approximations vx of ∥Ax∥U(k−1,ℓ) by Lemma 6 with α = εδ2

2k2

10: Select x ∈ X with degA(x) ≥ δk maximizing vx
11: return Sift’(X,Yx, Ax, δ, ε · (1− 1

k2), k − 1, ℓ)
12: end if
13: end procedure
14:

15: procedure Sift(X,Y,A, ε, k, l)
16: return Sift’(X,Y,A, (1 + ε

2)E[A], ε
4 , k, ℓ)

17: end procedure

Theorem 4.3 in the desired time complexity. Without loss of generality, we can assume that k ≤ ℓ;
otherwise we could analyze A⊤ and swap X,Y and k, ℓ. The procedure Sift is simply a wrapper
for the Sift’(X,Y,A, δ, ε, k, ℓ) routine, which accomplishes the task to

a. either return “regular,” in which case ∥A∥U(k,ℓ) ≤ (1 + ε)δ, or

b. return X ′ ⊆ X,Y ′ ⊆ Y such that |X ′||Y ′| ≥ ε
4 · δ

kℓ · |X||Y | and E[A[X ′, Y ′]] ≥ δ.

Henceforth we only consider δ ≤ 1, since otherwise the task is trivial; we can always return “regular”
using the trivial bound ∥A∥U(k,ℓ) ≤ 1 ≤ (1 + ε)δ.

Calling Sift’ with the parameters δ′ ← (1 + ε
2)E[A] and ε′ ← ε

2 , then, solves the task of Sift,
since δ′ ≥ E[A] and (1 + ε′)δ′ ≤ (1 + ε

4)(1 +
ε
2)E[A] ≤ (1 + ε)E[A] for ε ≤ 1. Thus for correctness

it suffices to show that the procedure Sift’ is implemented correctly. The Sift’ procedure first
attempts to identify a large set of high-degree vertices X ′; if successful, then the algorithm can
simply return X ′, Y to satisfy Theorem 4.3. Otherwise, the procedure applies Lemma 5: if k = 1,
then the graph must be regular; otherwise, we can continue searching forX ′, Y ′ in the most irregular
subgraph Ax = A[X,Yx] that is not too small (i.e. degA(x) ≥ δk). Case b guarantees that we will
be able to find such an irregular subgraph. Each time we recurse, the size of Y may decrease by
a factor of δk since we restrict the graph to Yx where |Yx|/|Y | = degA(x) ≥ δk, but the required
size of X ′ also increases by a factor of δ−ℓ ≥ δ−k. This prevents the size of the subgraph A[X ′, Y ′]
from becoming too small.

Correctness: We prove the following claims:

i. if the algorithm reports X ′, Y ′, then |X ′||Y ′| ≥ ε
4 · δ

kℓ · |X||Y | and E[A[X ′, Y ′]] ≥ δ, and

ii. if the graph is irregular, then the graph reports some X ′, Y ′ rather than reporting “regular.”
(Note that it does not matter what the algorithm reports if the graph is actually regular.)

17

Together these two claims prove the correctness of algorithm 3. For the first claim, we only return
X ′, Y ′ on line 4 of the program, and then degA(x) ≥ δ for all x ∈ X ′ (the parameter δ is the same
in all recursions), so it follows that E[A[X ′, Y ′]] ≥ δ. We prove claim (i.) by induction on the claim

|X ′||Y ′| ≥ ε

2
·

k∏
i=2

(
1− 1

i2

)
· δkℓ · |X||Y |,

over k ≥ 1, where X ′, Y ′ are the returned sets of Sift’(X,Y,A, δ, ε, k, ℓ) (note that
∏k

i=2(1−
1
i2) =

k+1
2k ≥

1
2 . If the procedure returns X ′, Y ′ on line 4 with |X ′| ≥ ε

2 · δ
kℓ · |X| and Y ′ = Y , then

|X ′||Y ′| ≥ ε
2 · δ

kℓ|X||Y |, as desired (in fact this holds when returning immediately for any k). In
the base case k = 1, X ′, Y ′ can only be obtained from line 4, so the base case holds. Suppose that
the inductive hypothesis holds for some k−1 ≥ 1, and consider the X ′, Y ′ returned for parameter k.
The sets X ′, Y ′ are either obtained from line 4, in which case the claim holds, or they are obtained
from line 11, i.e., Sift’(X,Yx, Ax, δ, ε · (1− 1

k2), k − 1, ℓ). In the latter case,

|X ′||Y ′| ≥ ε

2

(
1− 1

k2

)
·
k−1∏
i=2

(
1− 1

i2

)
· δ(k−1)l · |X||Yx| ≥

ε

2
·

k∏
i=2

(
1− 1

i2

)
· δkℓ · |X||Y |,

using the fact that |Yx| ≥ δk|Y |, ℓ ≤ k, and δ ≤ 1.
Now to prove claim (ii.), suppose that the graph A is irregular, i.e., ∥A∥U(k,ℓ) ≥ (1 + ε)δ. If

k = 1, then Lemma 5 guarantees that line 4 executes. Otherwise, if k > 1, Lemma 5 guarantees that
either line 4 is executed, or case (b) 5 applies and there exists some x ∈ X such that degA(x) ≥ δk

and ∥Ax∥U(k−1,ℓ) ≥ (1 + ε)δ. We choose x such that degA(x) ≥ δk and ∥Ax∥U(k−1,ℓ) is maximized

with error α/degA(x)
1
k ≤ α/δ = εδ

2k2 . Thus ∥Ax∥U(k−1,ℓ) ≥ (1+ ε)δ− εδ
k2 =

(
1+ ε ·

(
1− 1

k2

))
. Since

we recurse with ε′ = ε · (1 − 1
k2), the recursive call still deals with an irregular graph, so we can

apply induction to argue that the algorithm must return some X ′, Y ′.
Runtime: The runtime of the algorithm is straightforward due to the k-step simple recursion

scheme. It is mainly bottlenecked by the complexity of the grid approximation algorithm. With at
most k levels of recursion, and each recursion taking time n2(α)−O(kℓ(k+ℓ)) = n2(k/εδ)O(kℓ(k+ℓ)) to
compute the grid approximations, the total running time is still n2(k/εδ)O(kℓ(k+ℓ)), as the extra k
factor gets absorbed into the (k/εδ)O(kℓ(k+ℓ)) factor. All other tasks in each recursion layer can be
performed in O(n2) time. ■

4.5.1 Derandomizing sifting via deterministic regularity approximation

We now turn to proving Lemma 6: recall that (efficiently) derandomizing the approximation of the
grid norm ∥Ax∥U(k,ℓ) is required in order for our final algorithm (Theorem 1.1) to be deterministic
as desired. In this section we overview the use of oblivious samplers to obtain Lemma 6. We will
highlight the key ideas and intuition while omitting the technical details and full proofs, which can
be found in Section 4.1 in [AFK+23] and existing literature on oblivious samplers (e.g. [GW94]).

We start by showing why a näıve deterministic algorithm to compute the grid norm does not
suffice, motivating the need for more involved machinery like oblivious samplers (defined shortly).

Recall that for Ax = A[X,Yx], we can write ∥Ax∥kℓU(k,ℓ) = Ex1,...,xk∈X [Ey∈Yx
Πi∈[k]A(xi, y)]. The

direct approach for computing the expectations requires enumerating all k-tuples x1, ..., xk ∈ X
and all y ∈ Yx (n.b. assuming WLOG k ≤ ℓ, this formulation of the grid norm yields the best
näıve approach). This takes time |X|k|Yx|, which can be as large as nk+1. The Sift procedure will
eventually be applied in the decomposition (Section 4.6) with k = 2 and ℓ = d = Θ(7

√
log n) indeed

greater than k, so the näıve approach would take nk+1 = n3 time — already failing our attempt
to obtain a subcubic algorithm. Instead, by using oblivious samplers to approximate the norm in
n2 ·α−O(kℓ(k+ℓ)) time, we will ultimately obtain a Sift running faster in n2 · exp

(
d3poly(ε−1)

)
time

based on our choice of α in the proof of Theorem 4.3 and setting k = 2 and ℓ = d.
We now formally define oblivious samplers. Informally, the next lemma says the following:

given a set X, we can efficiently find a not-too-large family S of subsets S ⊆ X, each not too large,

18

such that the expected result from applying functions to a random element drawn from X does
not change significantly if we instead randomly draw the element from a randomly chosen subset
S ∈ S.

Lemma 7 (Oblivious Sampling: [GW94], Lemma 4.4. in [AFK+23]). Let X be a set and let
δ, ε > 0. There is a deterministic algorithm computing, in time |X| · poly

(
ε−1, δ−1, log |X|

)
, a

family S of subsets S ⊆ X such that

a. |S| ≤ |X| · poly
(
ε−1, δ−1

)
,

b. |S| ≤ poly
(
ε−1, δ−1

)
for all S ∈ S,

c. For every function f : X → [0, 1],

P
S∈S

[E
x∈X

f(x) = E
x∈S

f(x)± ε] ≥ 1− δ.

We call S an (ε, δ)-oblivious sampler of X.

The utility of oblivious samplers comes from the next lemma, which states that for S, T drawn
from oblivious samplers of X,Y respectively, the grid norm of any A ∈ {0, 1}X×Y can be approxi-
mated by the expected grid norm A[S, T] up to a reasonably small additive error.

Lemma 8 (Lemma 4.6 in [AFK+23]). Let A ∈ {0, 1}X×Y , let δ, e > 0 and k, ℓ ≥ 1, and let S, T
be (ε, δ)-oblivious samplers of X and Y , respectively. Then

∥A∥kℓU(k,ℓ) = E
S∈S
T∈T

∥A[S, T]∥kℓU(k,ℓ) ± (2ek + 2eℓ+ 2δ).

We omit the full proof of this lemma but sketch the following main ideas. By defining f(x) =∏
j∈[ℓ] A(x, yj) for fixed y⃗, we can bound the probability of (Ex∈Sf(x))

k deviating from (Ex∈Xf(x))k

using property (c) of oblivious sampling. We can then turn this into a (nonrandom) bound (non-
random) bound on the expectation over drawing S ∈ S using some probability bounding rules.
Recalling the definition of grid norm as an expectation of the product captured by f(x), we even-

tually obtain the desired bound between ∥A∥kℓU(k,ℓ) and ES∈Sc,T∈Tc ∥A[S, T]∥kℓU(k,ℓ) by taking some

additional expectations (over drawing y1, ..., yℓ ∈ Y and repeating this process with drawing T ∈ T).
Based on Lemma 8, we can finally satisfy Lemma 6 with Algorithm 4.

Algorithm 4 Deterministic regularity approximation algorithm

1: procedure ApproximateNorm(X,Y,A, k, ℓ, α)
2: Let ε = δ = αkℓ/(2k + 2ℓ+ 2) = αO(kℓ).
3: Precompute (ε, δ)-oblivious samplers S, T of X,Y respectively
4: Enumerate each S ∈ S, T ∈ T and each tuple (x1, ..., xk) ∈ Sk, (y1, ..., yℓ) ∈ T ℓ to compute

uT,y1,...,yℓ
← E

S∈S
E

x1,...,xk∈S

∏
i∈[k]
j∈[ℓ]

A(xi, yj)

5: Enumerate each T ∈ T , each (y1, ..., yℓ) to compute, for all x ∈ X,

ux ← E
T∈T

E
y1,...,yℓ∈S

[uT,y1,...,yℓ

∏
j∈[ℓ]

A(x, yj)]

6: return vx ← ux/ degA(x)
1
k , for all x ∈ X

7: end procedure

The details for correctness and running time of this algorithm can be found in the proof of
Lemma 4.3 in [AFK+23]. For correctness, the key idea is that the expectations over drawing x⃗ and

y⃗ from S and T give us the grid norm ∥Ax[S, T]∥kℓU(k,ℓ) up to some scaling involving degA(x), and

19

then we can apply Lemma 8 to bound the deviation from the desired norm ∥Ax∥U(k,ℓ). Our choice
of ε, δ will then yield the desired additive bound in terms of α.

For the runtime, the most expensive operation ends up being computing uT,y1,...,yℓ
— as we

might intuitively expect, since this involves enumerating each S ∈ S and each T ∈ T , then enu-
merating each k-tuple from S and each ℓ-tuple from T , and finally computing the product of kℓ
entries. This requires O(

∑
S∈S,T∈T |S|k|T |ℓ · kℓ) = n2poly(ε−1, δ−1)(k+ℓ) time by applying prop-

erties (a) and (b) of oblivious samplers (Lemma 7). Then, once the overall runtime is bounded
by n2poly(ε−1, δ−1)(k+ℓ), our choice of ε = δ = αO(k,ℓ) guarantees the desired n2 · αO(−kℓ(k+ℓ))

runtime.

4.6 Decomposing a single bipartite graph

We are now ready to apply our key tools of Lemma 4 (MinDegree) and Theorem 4.3 (Sift) as
subroutines for our goal in Theorem 4.2: decomposing a single bipartite graph A ∈ {0, 1}X×Y into
components that are both ε-min-degree and (ε, 2, d)-regular. As a first step, we develop algorithm
GoodRect to find a single component (subgraph) satisfying these conditions along with additional
properties of being at least as dense as the starting graph and sufficiently large. We use the same
terminology as [AFK+23] in referring to this as a “good rectangle” (recall the matrix-graph analogy).

To motivate how we will apply Lemma 4 and Theorem 4.3, we begin by formalizing our earlier
claim that the density increment cases in these subroutines do not pose a problem due to a bounded
recursion guarantee. The key is that we will execute the GoodRect algorithm only when A is
sufficiently dense (E[A] > 2−d), because, as suggested by Theorem 4.2’s statement and seen in the
ideal case of Section 4.3, we will be able to separately handle the sparse case (E[A] ≤ 2−d). Notice
that MinDegree (called with γ = 1

2) and Sift both guarantee a factor (1 + ε/2) increase over
E[A] in the density increment cases, and furthermore recall that by definition the density can never
exceed 1. Then if we recursively call our subroutines on the returned subgraphs whenever a density
increment is encountered, the recursion depth will be at most log1+ε/2(1/2

−d) = d
lg(1+ε/2) = O(d/ε)

— we will refer to this as observation (⋆) — at which point we will be guaranteed to exit the recursion
with our desired ε-min-degree and regularity properties.

We formally state the result that we can efficiently find a good rectangle X∗ × Y ∗ ⊆ X × Y in
Lemma 9 and present the simple GoodRect algorithm for doing so in Algorithm 5 below.

Lemma 9 (Finding a Good Rectangle: Lemma 5.2 in [AFK+23]). Let A ∈ {0, 1}X×Y , let ε ∈ (0, 1),
and d ≥ 1, and assume E[A] ≥ 2−d. There is a deterministic algorithm GoodRect(X,Y,A, ε, d)
running in time n2 · exp(d3poly(ε−1) (for n = |X| + |Y |) that computes X∗ ⊆ X,Y ∗ ⊆ Y s.t. for
A∗ = A[X∗, Y ∗],

(1) A∗ is ε-min degree and (ε, 2, d)-regular

(2) E[A∗] ≥ E[A]

(3) |X∗||Y ∗| ≥ exp(−d3poly(ε−1))|X||Y |

The GoodRect algorithm simply implements the process of calling MinDegree and Sift and
recurring if we hit the density increment case in either subroutine, such that we ultimately exit in
the alternate ε-min-degree and (ε, 2, d)-regular cases of Lemma 4 and Theorem 4.3 respectively. Ob-
servation (⋆) guarantees that we do eventually exit the recursion, and we will see this observation’s
importance in the following proofs of GoodRect’s correctness and runtime as well.

Proof of Lemma 9. Correctness: Given that GoodRect does terminate (⋆), Property 1 is im-
mediate: in the final call to GoodRect, both MinDegree and Sift must not return a density
increment (or else GoodRect would recur), so by the cases in Lemma 4 and Theorem 4.3, Min-
Degree instead returns X ′ s.t. A′ is ε-min-degree and Sift verifies that this A′ is (ε, 2, d)-regular.

Property 2 is also straightforward: in a given call to GoodRect with graph A, either we recurse
(lines 4 and 7) on a subgraph of A that is at least as dense as A (as we are in the density increment

20

Algorithm 5 (Algorithm 5.2 in [AFK+23])

1: procedure GoodRect(X,Y,A, ε, d)
2: Compute X ′ ←MinDegree(X,Y,A, ε, 1

2), inducing A′ ← A[X ′, Y]
3: if E[A′] ≥ (1 + ε

2)E[A] then
4: return GoodRect(X ′, Y, A′, ε, d)
5: end if
6: if Sift(X ′, Y, A′, ε, 2, d) returns a denser rectangle X ′′ × Y ′′ ⊂ X ′ × Y ′ then
7: return GoodRect(X ′′, Y ′′, A[X ′′, Y ′′], ε, d)
8: end if
9: return X ′, Y

10: end procedure

of MinDegree or Sift), or we return the subgraph A′ returned by MinDegree, for which Lemma
4 guarantees E[A′] ≥ E[A].

It remains to lower bound the size |X∗||Y ∗| to prove Property 3. Intuitively, the concern is that
size of the the (sub)graph A we are searching decreases in each recursive call to GoodRect, but
we have the following three guarantees:

a. The recursion depth is upper bounded by D := log1+ε/2(2
d) (⋆).

b. In the finalGoodRect(X,Y,A, ε, d) call to prior to termination, we returnX ′, Y s.t. |X ′||Y | ≥
⌊ 12 |X|⌋|Y | ≥

1
3 |X||Y |, since MinDegree returns X ′ s.t. |X ′| ≥ ⌊ 12 |X|⌋ and Y does not

change. Let F := 1
3 be this lower bound on the final size factor.

c. The input size does not decrease too much in any given recursive call. In particular, Min-
Degree still returns X ′ s.t. |X ′| ≥ ⌊ 12 |X|⌋ , and in the density increment case Sift returns
X ′, Y ′ s.t. |X ′||Y ′| ≥ ε

16E[A]2d|X||Y | ≤ ⌊ 12 |X|⌋|Y | (Theorem 4.3). Thus the input to each
recursive call is at least a ε

16E[A]kℓ-fraction of the parent call’s input graph size (measured by
|X||Y |). Let C := ε

16E[A]kℓ be this lower bound on the recursive size factor.

Combining these three guarantees, it follows that our final good rectangle size |X∗||Y ∗| must be at

least F ·CD|X||Y | = 1
3 ·(

ε
16E[A]2d)log1+ε/2(2

d) ≥ 1
3 ·(

ε
162

−2d2

)
d

lg(1+ε/2) |X||Y | = exp(−d3poly(ε−1))|X||Y |.
For the first inequality we use the fact that E[A] ≥ 2−d, and for the second we use lg(1 + a) ≥ a
for any a ∈ (0, 1). This completes the proof of Property 3.

Runtime: By Lemma 4 a call to MinDegree takes O(|X||Y |) = O(n2) time, and by Theorem

4.3 a call to Sift takes n2 · (εE[a])−O(d2) = n2 · exp(−d3poly(ε−1)) time (where we are substituting
k = 2 and ℓ = d, and again noting E[A] ≥ 2−d). So each execution of a call to GoodRect takes
n2 · exp(−d3poly(ε−1)) (i.e. the Sift call dominates). Since the recursion depth is O(d/ε) (⋆), the
total running time for GoodRect is O(d/ε) ∗n2 · exp(−d3poly(ε−1)), which is asymptotically just
n2 · exp(−d3poly(ε−1)). ■

We now proceed to prove Theorem 4.2. The promised decomposition algorithm is Algorithm 6.

Algorithm 6 (Algorithm 5.3 in [AFK+23])

1: procedure ADecomposition(X,Y,A, ε, d)
2: if E[A] ≤ 2−d then
3: return {(X,Y,A)}
4: end if
5: Compute X∗, Y ∗ ← GoodRect(X,Y,A, ε, d)
6: return {(X∗, Y ∗, A[X∗, Y ∗])} ∪ADecomposition(X,Y,A−A[X∗, Y ∗], ε, d)
7: end procedure

21

Given that we’ve already developed the GoodRect subroutine, the algorithm is an extremely
simple recursion: For the base case, if the input graph A is sparse, then we simply return the graph
as is. Otherwise, we

(1) find a good rectangle (as described in Lemma 9)

(2) delete the edges in the subgraph induced by the good rectangle from the graph

(3) add this subgraph to the list of tuples we return

(4) recurse on the remainder of the graph (we will argue that the recursion depth is bounded
later in this section).

We claim that this algorithm satisfies all the correctness and runtime properties specified in
Theorem 4.2.

Proof. Correctness of Properties 1 and 2. These follow immediately from the properties of
the return value of GoodRect, see Lemma 9.

Conceptually, this is already the most important part of the algorithm: we’ve successfully
partitioned the graph into components that are either sparse, or regular in the sense of Theorem
4.1.

Thus, our only remaining task is to prove that properties (3) and (4) are met – that is, that
the total size of the returned vertex parts is not too large, and that the recursion depth is suitably
bounded.

Correctness of Property 3. We will prove the correctness of property (3) by induction.
The base case is when the algorithm is called on an input A that is sparse (that is, E[A] ≤ 2−d).

In this case, we return the trivial partition X,Y , which clearly satisfies |X||Y | ≤ (d+ 2)|X||Y |.
For the inductive step, we will show the stronger statement that for any input X,Y,A, ε, d such

that E[A] > 2−d, we have that the output of ADecomposition satisfies

L∑
ℓ=1

|Xℓ||Yℓ| ≤ (d+ 2− log
(
E[A]−1

)
)|X||Y |.

Thus, fix A with E[A] > 2−d. Note that in this case log
(
E[A]−1

)
≤ d log 2 and hence d −

log
(
E[A]−1

)
≥ 0.

LetA∗ = A[X∗, Y ∗] be the subgraph induced by the vertex sets returned byGoodRect(X,Y,A, ε, d).
There are two cases to consider. If E[A−A∗] ≤ 2−d (that is, the very next recursive call is the

base case), then ADecomposition(X,Y,A, ε, d) returns {(X∗, Y ∗, A∗), (X,Y,A−A∗)}. We verify
that

|X∗||Y ∗|+ |X||Y | ≤ 2|X||Y | ≤ (d+ 2− log
(
E[A]−1

)
|X||Y |.

The first inequality follows since X∗, Y ∗ are subsets of X,Y and the second inequality follows from
the observation that d− log

(
E[A]−1

)
≥ 0 above.

We now move on to the second case. Suppose that the call to ADecomposition(X,Y,A −
A∗, ε, d) returns a set of tuples {(Xℓ, Yℓ, Aℓ)}Lℓ=1. We need to prove that

|X∗||Y ∗|+
L∑

ℓ=1

|Xℓ||Yℓ| ≤ (d+ 2− log
(
E[A]−1

)
)|X||Y |.

We can now use the induction hypothesis to claim that

|X∗||Y ∗|+
L∑

ℓ=1

|Xℓ||Yℓ| ≤ |X∗||Y ∗|+ (d+ 2− log
(
E[A−A∗]−1

)
)|X||Y |.

22

Comparing the two inequalities above, by rearranging, it suffices to prove that

|X∗||Y ∗|
|X||Y |

≤ log

(
E[A]

E[A−A∗]

)
.

Note that by our definition of density, the number of edges that exist in A−A∗ is

|X||Y |E[A]− |X∗||Y ∗|E[A∗].

Since the vertex parts of A−A∗ still have sizes X,Y , edge density of A−A∗ is

E[A−A∗] =
|X||Y |E[A]− |X∗||Y ∗|E[A∗]

|X||Y |
.

Plugging this value into our inequality above yields that it suffices to prove

|X∗||Y ∗|
|X||Y |

≤ − log

(
1− |X

∗||Y ∗|
|X||Y |

E[A∗]

E[A]

)
.

Now we use the crucial fact that by Lemma 9, E[A∗]/E[A] ≥ 1. Let p = |X∗||Y ∗|/(|X||Y |) and
let q = E[A∗]/E[A]. Then the inequality above is equivalent to

−p ≥ log(1− pq) ⇐⇒ e−p ≥ 1− pq.

Of course, this last inequality holds since q ≥ 1 and for all real p we have e−p ≥ 1− p.
Correctness of Property 4. Note that we add exactly one tuple to our decomposition for

each call of the ADecomposition subroutine, and thus the recursion depth is exactly L. Thus,
it suffices to bound the number of recursive calls until the density of the graph drops below 2−d

(when we reach the base case and return).
Suppose Algorithm 6 is called with a graph A as input. By the formula for E[A − A∗] in the

proof of correctness of Property 3 above, we have that

E[A−A∗] = E[A]− |X
∗||Y ∗|
|X||Y |

E[A∗] ≤
(
1− |X

∗||Y ∗|
|X||Y |

)
E[A],

where the inequality follows from E[A∗] ≥ E[A] (Lemma 9). Therefore, in each iteration, the density

of the matrix passed as input to the algorithm decreases by a factor of 1− |X∗||Y ∗|
|X||Y | .

We are in good shape because By Lemma 9, we can lower bound the cardinalities of |X∗||Y ∗|.
In particular, we have that

|X∗||Y ∗|
|X||Y |

≥ exp
(
−d3poly(ε−1)

)
= r.

It is easy to see (using the inequality (1 − α)1/α ≤ e−1 for α ∈ (0, 1), for example), that after
d/r = exp

(
−d3poly(ε−1)

)
iterations, the density of the graph passed as input will have dropped

below 2−d, after which we return. This finishes the proof of the bound on the recursion depth.
Correctness of Runtime. Since the X,Y, ε, d inputs to the algorithm remain constant

throughout execution, and we can compute E[A] in O(n2) time (which is dominated by the runtime
of GoodRect), the runtime of the algorithm is bounded by the runtime of a single GoodRect
call when fed a graph of size n as input, multiplied by L (the recursion depth). By Lemma 9 and
the bound on L from Property 4 above, this quantity is asymptotically n2 exp

(
d3poly(ε−1)

)
, as

desired. ■

23

4.7 The full decomposition

Having established Theorem 4.2, we now turn to briefly discussing the full simultaneous decompo-
sition of a tripartite graph. For completeness, we include the result here:

Theorem 4.4 (Theorem 3.1 in [AFK+23]). Let A ∈ {0, 1}X×Y , B ∈ {0, 1}Y×Z , with ε ∈ (0, 1) and
d ≥ 1. There is an algorithm ABDecomposition(X,Y, Z,A,B, ε, d) that computes a collection
of tuples {(Xk, Yk, Zk, Ak, Bk)}Kk=1, where Xk ⊆ X, Yk ⊆ Y , Zk ⊆ Z, Ak ∈ {0, 1}Xk×Yk , Bk ∈
{0, 1}Yk×Zk such that

(1) AB =
∑K

k=1 AkBk.

(2) For all k ∈ [K], either

(i) E[Ak] ≤ 2−d or E[Bk] ≤ 2−d, or

(ii) Ak and BT
k are both (ε, 2, d)-regular and ε-min-degree.

(3)
∑K

k=1 |Xk||Yk||Zk| ≤ 2(d+ 2)2|X||Y ||Z|.

(4) K ≤ exp(d7poly(ε−1)).

Moreover, the algorithm is deterministic and runs in time n2exp(d7poly(ε−1)) (where here n =
|X|+ |Y |+ |Z|).

As promised, the decomposition is in a very similar spirit to Theorem 4.2: this time we decom-
pose the pair of bipartite graphs A,B into disjoint pieces Ak, Bk such that – for each k – either
one of these pieces is sparse, or together they satisfy the conditions of Theorem 4.1.

Unfortunately, as the authors in [AFK+23] themselves point out, achieving this full decompo-
sition that satisfies the properties we want within the desired runtime is quite a bit more intricate
than the decomposition of the single graph that we finished reviewing in Section 4.6, so we omit
the details of the corresponding proofs here.

Very roughly, whereas in the single-graph decomposition we repeatedly found “good rectangles”
(subgraphs of A induced by X∗ ⊆ X and Y ∗ ⊆ Y), our goal for the simultaneous decomposition of
A and B is to find (again in the language of the paper) a good cube Y ∗, Z∗, {(Xℓ, Yℓ, Aℓ)}Lℓ=1. We
now describe our end goal in more detail.

Start with the graph B. We would like to find a good rectangle Y ∗ × Z∗ in B that works well
with a regularity decomposition of A.

We know from Theorem 4.2 that we can compute a decomposition (Xℓ, Yℓ, Aℓ)
L
ℓ=1 of A[X,Y ∗]

such that each edge part is either sparse or regular.
However, this is not quite enough. Even though Y ∗×Z∗ gives a good rectangle in B, in order to

set Bk = B[Yℓ, Z
∗] (for the decomposition required by Theorem 4.4) we need this induced subgraph

of Y × Z∗ in B to be (ε, 2, d)-regular and ε-min-degree, which is not automatically guaranteed by
Y ∗×Z∗ yielding a good rectangle (a general good rectangle Y ∗×Z∗ is completely oblivious to the
decomposition of A).

Thus, it turns out that repeatedly computing such a good cube (and removing it to recurse on
the remaining graph in a very similar way to Algorithm 6), we need an additional level of recursion
that worsens the dependence on d, which goes from exp(d3) to exp(d7). For all the details that we
overlook here, see Sections 3.3 and 5.2 of [AFK+23].

4.8 A state-of-the-art combinatorial algorithm for triangle detection

With Theorem 4.4, we are now ready to prove the main result of [AFK+23]: the existence of an
efficient combinatorial algorithm for triangle detection. The main idea of the algorithm is to use
Theorem 4.4 to reduce a graph to a collection of regular or sparse parts, at which point we can use
the ideas of Section 4.3 to determine whether or not each part contains a triangle.

24

Theorem 4.5 (Triangle detection, Theorem 6.2 in [AFK+23]). There is a deterministic combina-

torial algorithm detecting whether or not a graph contains a triangle in time n3/2Ω(7
√
logn).

Proof. Let ε = 1
160 (so that Theorem 4.1 applies), and let d ≥ 2

ε be a parameter to be determined
later. Without loss of generality, we can assume that the input is a tripartite graph (X,Y, Z,A,B,C)
due to Lemma 1. The triangle detection algorithm on this graph is as follows. Use Theorem 4.4 to

obtain the regularity decomposition
{
(Xk, Yk, Zk, Ak, Bk

}K

k=1
, and let Ck = C[Xk, Zk]. Then for

each part (Ak, Bk, Ck), check whether or not it contains a triangle:

a. if E[A] ≤ 2−d or E[B] ≤ 2−d or E[C] ≤ 2−εd/2, then search in (Xk, Yk, Zk, Ak, Bk, Ck) for a
triangle using the brute force method, and return “yes” if we find one.

b. otherwise, return “yes.”

If we do not return “yes” in any part, then return “no.”
Correctness: First, observe that property (1) of 4.4, which asserts AB =

∑K
k=1 AkBk, implies

that an edge in AB is present if that edge is present in some AkBk for k ∈ [K]. It follows that a
triangle in (A,B,C) is present iff it is present in (Ak, Bk, Ck) for some k ∈ [K], so it remains to
show that the above procedure for triangle detection in a part (Ak, Bk, Ck) is correct.

The proof of correctness for triangle detection in each part is identical to the argument presented
in Section 4.3; for completeness we repeat it here. Case (a) of the procedure evidently yields the
correct result since it simply does an exhaustive brute-force search, so consider case (b). Since
E[A],E[B] > 2−d, it must be that Ak and B⊤

k are both (ε, 2, d)-regular and ε-min-degree by property
(2) of Theorem 4.4. Then Theorem 4.1 guarantees that Ak◦Bk is (E[Ak]E[Bk], 80ε, 2

−εd/2)-uniform.
By definition of uniformity

P(x,z)∈X×Z

[
(Ak ◦Bk)(x, z) ∈ [(1− 80ε)E[Ak]E[Bk], (1 + 80ε)E[Ak]E[Bk]

]
≥ 1− 2−εd/2,

so in particular with probability at least 1 − 2−εd/2 we have (Ak ◦ Bk)(x, z) > 0 (since 1 − 80ε =
1− 80

160 > 0), or equivalently (AkBk)(x, z) = 1. Meanwhile E[Ck] > 2−εd/2, as otherwise we would
be in the first case. By the Pigeonhole Principle, AkBk and Ck must have a nonzero entry in
common, so there indeed exists a triangle in (Ak, Bk, Ck). Therefore case (b) correctly returns
“yes.”

Running time: There are two phases to the algorithm: a precomputation phase, where the
decomposition promised by Theorem 4.4 is computed, and the triangle detection phase, where we
check whether each part of the decomposition contains a triangle. The runtime of the precompu-
tation phase is n2 · exp

(
d7 poly(ε−1)

)
. The runtime of the brute force search in the sparse case for

a given part (Xk, Yk, Zk) is at most |Xk||Yk||Zk|/2−εd/2, so using property (3) of Theorem 4.4 the
total runtime of these searches is bounded by

K∑
k=1

|Xk||Yk||Zk|
2Ω(d)

≤ |X||Y ||Z| · 2(d+ 2)2

2Ω(d)
=
|X||Y ||Z|
2Ω(d)

.

To optimize d, we must choose d small enough so that the precomputation running time n2 ·
exp

(
d7 poly(ε−1)

)
= n2 · 2O(d7) is subcubic, but as large as possible to minimize the sparse search

running time |X||Y ||Z|/2Ω(d) ≤ n3/2Ω(d). Choosing d = Θ(7
√
log n) with a sufficiently small con-

stant factor such that n2 ·2O(d7) is truly subcubic (e.g. O(n2.1)), the search running time dominates,

and hence the total running time is n3/2Ω(7
√
logn), which suffices for the proof. ■

Theorem 4.5 and Corollary 2.1.1 allow us to connect this result back to BMM: together, they
directly imply Theorem 1.1, giving us the desired super-poly-logarithmic saving over the näıve
O(n3) algorithm. Note that Theorem 4.5 is robust, as far as BMM is concerned, in the sense that
we prove more powerful results than we actually need. For instance, Theorem 4.5 is proved in
generality for any graph, but the graph representation that is useful for BMM has some special

25

properties, namely, that E[C] = 1, so in fact the sparse case that E[Ck] ≤ 2−εd/2 is not even

possible. Additionally, property (3) proves the bound
∑K

k=1 |Xk||Yk||Zk| ≤ O(d2) · |X||Y ||Z|, but it
would also have sufficed to show any bound with a poly(d) factor, since it is absorbed into a 2−Ω(d)

factor in the final running time.

5 Conclusion

In this paper, we’ve reviewed recent advances in combinatorial BMM algorithms, focusing on those
that exploit regularity decomposition theorems to achieve subcubic runtimes. The remarkable
quasi-polynomial improvement in [AFK+23] is based on employing a measure of regularity ((ε, k, ℓ)-
regularity discussed in Section 4.2)) that is in some sense “just right”: it allows for a decomposition
of an arbitrary graph into pieces that are pseudo-random enough to make the Triangle Detection
problem easy, but not into so many pieces that efficiency is excessively sacrificed. In this way, the
authors manage to surpass the improvements achieved in [BW09], whose use of Szemerédi regularity
and Frieze-Kannan’s weak regularity was not quite enough to go beyond polylog(n) savings.

Of course, despite this remarkable result, Conjecture 1.1 still stands. Given the potential im-
plications of improved combinatorial BMM algorithms to well-known lower bounds in fine-grained
complexity 5, this result should motivate further research into the problem. In particular, as Prof.
Yu pointed out in a 2018 publication of his algorithm ([Yu18]) and we note in Section 2.1, the
research community has not established a formal, widely agreed upon definition of what exactly
counts as a “combinatorial” algorithm. The lower-bounds paper by Das et al. ([DKS18]) was a step
forward in attempting to remedy this situation, but as [AFK+23] points out, the algorithmic models
they provide (and the associated lower bounds they derive) are not expansive enough to cover any
of the state-of-the-art algorithms proposed since 2009 ([BW09], [Cha14], [Yu15], and [AFK+23]) as
combinatorial. Rigorously defining this concept in a way that encompasses these recent advances
would go a long way to improving our understanding of the limitations of combinatorial techniques.

5e.g. for All-Pairs Shortest-Paths, Online Matrix-Vector Multiplication, finding hypercliques in uniform hyper-
graphs, etc. See the discussion and associated citations in Section 1.1 of [AFK+23] for a detailed discussion.

26

References

[ABH10] Martin Albrecht, Gregory Bard, and William Hart. Algorithm 898: Efficient multi-
plication of dense matrices over gf(2). ACM Transactions on Mathematical Software,
37(1):1–14, January 2010.

[ADKz70] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev. On economical con-
struction of the transitive closure of an oriented graph. Soviet Mathematics Doklady,
11:1209–1210, 1970. URL: http://cr.yp.to/bib/entries.html#1970/arlazarov.

[AFK+23] Amir Abboud, Nick Fischer, Zander Kelley, Shachar Lovett, and Raghu Meka. New
graph decompositions and combinatorial boolean matrix multiplication algorithms,
2023.

[Ang76] Dana Angluin. The four russians’ algorithm for boolean matrix multiplication is
optimal in its class. ACM SIGACT News, 8(1):29–33, 1976.

[BKM95] Julien Basch, Sanjeev Khanna, and Rajeev Motwani. On diameter verification and
boolean matrix multiplication. Technical report, Stanford, CA, USA, 1995.

[BW09] Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial algorithms.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages
745–754, 2009.

[Cha14] Timothy M Chan. Speeding up the four russians algorithm by about one more loga-
rithmic factor. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on
Discrete algorithms, pages 212–217. SIAM, 2014.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to algorithms /. MIT Press,, Cambridge, Mass. :, 3rd ed. edition, 2009.

[DHZ00] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM
Journal on Computing, 29(5):1740–1759, 2000.

[DKS18] Debarati Das, Michal Koucký, and Michael E. Saks. Lower bounds for combinatorial
algorithms for boolean matrix multiplication. ArXiv, abs/1801.05202, 2018.

[FK99] Alan Frieze and Ravindran Kannan. Quick approximation to matrices and applica-
tions. Combinatorica, 19:175–220, 02 1999.

[FM71] M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive closure.
In 12th Annual Symposium on Switching and Automata Theory (swat 1971), pages
129–131, 1971.

[Fur70] ME Furman. Application of a method of rapid multiplication of matrices to the
problem of finding the transitive closure of a graph. In Doklady Akademii Nauk,
volume 194, pages 524–524. Russian Academy of Sciences, 1970.

[GM97] Zvi Galil and Oded Margalit. All pairs shortest distances for graphs with small integer
length edges. Information and Computation, 134(2):103–139, 1997.

[GM17] Joshua A. Grochow and Cristopher Moore. Designing strassen’s algorithm, 2017.

[GW94] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties
(preliminary version) a quality-size trade-off for hashing. In Proceedings of the twenty-
sixth annual ACM symposium on Theory of computing, pages 574–584, 1994.

[HSHvdG16] Jianyu Huang, Tyler M. Smith, Greg M. Henry, and Robert A. van de Geijn. Imple-
menting strassen’s algorithm with blis, 2016.

27

[IR77] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. In Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, STOC ’77, page 1–10,
New York, NY, USA, 1977. Association for Computing Machinery.

[KLM23] Zander Kelley, Shachar Lovett, and Raghu Meka. Explicit separations between ran-
domized and deterministic number-on-forehead communication. Electron. Colloquium
Comput. Complex., TR23, 2023.

[KSSS02] János Komlós, Ali Shokoufandeh, Miklós Simonovits, and Endre Szemerédi. The
Regularity Lemma and Its Applications in Graph Theory, pages 84–112. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2002.

[Lee01] Lillian Lee. Fast context-free grammar parsing requires fast boolean matrix multipli-
cation, 2001.

[Sei95] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs.
Journal of Computer and System Sciences, 51(3):400–403, 1995.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
13(4):354–356, Aug 1969.

[Su21] Jessica Su. Lecture 2: Boolean matrix multiplication (bmm), September 2021.

[Val75] Leslie G. Valiant. General context-free recognition in less than cubic time. Journal
of Computer and System Sciences, 10(2):308–315, 1975.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between
path, matrix and triangle problems. In 2010 IEEE 51st Annual Symposium on Foun-
dations of Computer Science, pages 645–654, 2010.

[WXXZ23] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds
for matrix multiplication: from alpha to omega, 2023.

[Yu15] Huacheng Yu. An improved combinatorial algorithm for boolean matrix multiplica-
tion. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speck-
mann, editors, Automata, Languages, and Programming, pages 1094–1105, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[Yu18] Huacheng Yu. An improved combinatorial algorithm for boolean matrix multiplica-
tion. Information and Computation, 261:240–247, 2018. ICALP 2015.

28

	Introduction
	Background
	Combinatorial algorithms
	Divide and conquer: The Four Russians' Algorithm
	Reduction to Triangle Detection

	Graph regularity decompositions
	Szemerédi's regularity lemma
	BMM via graph regularity in bansalwilliams2012

	A new graph decomposition in abboud2023new
	Preliminaries
	Grid regularity and matrix products
	Easy case: regular edge parts
	Enforcing -min-degree
	Enforcing regularity via ``sifting"
	Derandomizing sifting via deterministic regularity approximation

	Decomposing a single bipartite graph
	The full decomposition
	A state-of-the-art combinatorial algorithm for triangle detection

	Conclusion

