
Applying GPT-3 and Dense Embeddings to NLProofS
Roma Bhattacharjee †, Arya Maheshwari †, Zachary S. Siegel †

Princeton University, † Equal Contribution

Background

A fascinating problemwithin NLP is proof generation and automated reason-

ing. This involves generating a multistep proof of a given hypothesis from a

set of assumed statements or premises.

To more easily research this problem, Dalvi et al. [1] curated a dataset called

EntailmentBank, derived from the WorldTree V2 corpus [6], which contains

multistep entailment trees. In their paper, they also break the proof gener-

ation problem into 3 distinct tasks of varying difficulty: in Task 1, the only

premises provided are those in the ground truth proof tree, and the task

is to determine which intermediate steps to generate. Task 2 provides 25

premises, which includes several “distractor” premises in addition to the re-

quired premises. Here, the systemmust also discernwhich facts are relevant

and which are distractors, as well as generate the correct proof tree. Task

3 is a larger version of Task 2—it provides as input all 12K premises from

WorldTree, from which the proof generation system must retrieve premises

to use for a given hypothesis. Follow-up work (including ours) follows this

three-task framework in the evaluation of proof generation models.

RelatedWork

In addition to curating EntailmentBank, Dalvi et al. trained BERT and

RoBERTa-based models to perform retrieve relevant premises for Task 3.

Given a hypothesis, the retrieval model returns a set of 25 premises from

the corpus.

Yang et al.’s NLProofS paper [7] introduces (1) a separate verifier model

to score proof steps generated by their prover (to prevent “hallucinated”

steps) and (2) a search algorithm to find the highest-scoring proof.

Overview

We conduct two separate studies based on Yang et. al’s NLProofS model:

1. Replacing NLProofS’s T5 prover with GPT-3 + in-context learning.

NLProofS’s architecture implements a stepwise prover by fine-tuning a

T5 model. While Yang et al. did show that using GPT-3 to generate the

entire proof at once (“single-shot”) performed worse than NLProofS,

they did not try using GPT-3 with in-context learning to only generate

stepwise proofs. Thus, this study investigates NLProofS’s performance

after replacing just the T5 prover model with GPT-3.

2. Retrieval using (dense) sentence embeddings. Yang et al. do not

explicitly focus on retrieval; in evaluating their Task 3 performance,

they simply use the same 25 premises returned by Dalvi et al.’s

RoBERTa-based retrieval model. This second study evaluates

NLProofS’s performance with alternative retrieval methods that use

pre-trained dense sentence embeddings to see if gold tree premise

recall can be improved.

Acknowledgements and References

We thank Prof. Danqi Chen for her guidance throughout this project and
Tianyu Gao for correspondence regarding SimCSE.

[1] Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna Pipatanangkura,

and Peter Clark. Explaining answers with entailment trees. EMNLP, 2021.

[2] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence

embeddings. In Empirical Methods in Natural Language Processing (EMNLP), 2021.

[3] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and

Edouard Grave. Unsupervised dense information retrieval with contrastive learning, 2021.

[4] Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Rui Dong, Xiaokai Wei, Henghui Zhu, Xinchi Chen, Peng

Xu, Zhiheng Huang, Andrew Arnold, and Dan Roth. Entailment tree explanations via iterative

retrieval-generation reasoner. In Findings of the Association for Computational Linguistics: NAACL 2022,

pages 465–475, Seattle, United States, July 2022. Association for Computational Linguistics.

[5] Minghan Li Barlas Oguz Jimmy Lin Yashar Mehdad Wen-tau Yih Xilun Chen Sheng-Chieh Lin, Akari Asai.

How to train your dragon: Diverse augmentation towards generalizable dense retrieval. arXiv e-print

2302.07452, 2023.

[6] Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Elizabeth Wainwright, Steven Marmorstein, and Peter

Jansen. WorldTree v2: A corpus of science-domain structured explanations and inference patterns

supporting multi-hop inference. In Proceedings of the Twelfth Language Resources and Evaluation

Conference, pages 5456–5473, Marseille, France, May 2020. European Language Resources Association.

[7] Kaiyu Yang, Jia Deng, and Danqi Chen. Generating natural language proofs with verifier-guided search.

In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2022.

Study 1: Methods

In the first study, we replace components of the prover with gpt-3.5-turbo. We the-

orize that since gpt-3.5-turbo was trained on a much larger set than the T5 model, it

could use additional background knowledge to help at the proof completion task.

We train gpt-3.5-turbo using in-context learning since fine-tuning is cost prohibitive.

We utilize the same training data and dataloader that the original NLProofS method-

ology loaded, and we randomly sample proof examples to feed into gpt-3.5-turbo.
The number of training examples is limited by the maximum number of tokens gpt-
3.5-turbo can take, 4096 tokens. This token limit allows for a maximum of about 8

examples.

In the first experiment, we replace the entire T5 model with gpt-3.5-turbo for both

the initial greedy tree generation and for the search method. However, as seen in the

Table 1, this model performs poorly.

In the second experiment, we want to lower bound the performance so that our mod-

ifications will not cause the model to perform worse than before. We elect to use a

”hybrid” model, where we keep T5 for initial greedy tree generation, and then gpt-3.5-
turbo in the tree search algorithm to improve upon the initial generated tree. We run

these experiments as a function of the number of in-context examples.

Study 2: Methods

In this second study, we investigate the effects of replacing the premises used by Yang

et al. for Task 3 (obtained via the outputs of Dalvi et al.’s retrieval) with an alternate

approach that employs sentence embeddings to retrieve premises from the WorldTree

corpus for a given hypothesis.

The main idea is to map all facts in the WorldTree corpus C and a given hypothesis h to

dense vectors using a sentence embedding model, and to then score the relevance of

candidate premises to the hypothesis through a vector similarity metric.

We evaluate three sentence embedding models for this task, pretrained on other (dif-

ferent) information retrieval tasks: SimCSE [2], Contriever [3], and DRAGON-RoBERTa
[5].

We first employ these models to implement a baseline retrieval algorithm which simply

returns the top k premises that, as embeddings, yield the highest cosine similarity score

to the hypothesis embedding (see details in Algorithm 1; we use k = 25 like in Yang et

al.). We evaluate performance by computing recall (”Recall@25”) of the gold proof tree’s

premises (see Table 2).

Manual inspection of Alg. 1 results showed that the gold tree premises missed by our

retrieval were often shorter facts less similar to the full hypothesis but necessary as

building blocks in the final reasoning. Thus, to refine our approach of selecting solely

for similarity to the full hypothesis h, we implement a modified algorithm that splits h
into halves (by number of words) and selects some premises based on similarity to each

half of h. See Algorithm 2 for details.

Finally, we evaluate each of these retrieval methods by using them in the full Task 3 NL-

ProofS pipeline. In particular, we run the NLProofSmodel trained onTask 2 and evaluate

its zero-shot performance on Task 3, using each set of retrieved premises obtained ac-

cording to various combinations of the embedding models and retrieval algorithm (Alg.

1 or Alg. 2).

Algorithm 1 Baseline Embedding Retrieval

Input: corpus C, hypothesis h, embedding model
Emb, context size k

Output: list of k premises for h

1: h← Emb(h)
2: C := {ci}1≤i≤|C|← Emb(C)
3: scores← ∅ (dict)
4: for each ci ∈ C do
5: scores[ci] = simcos(ci, h)
6: end for

7: scores← sort(scores)
8: in descending order by value

9: return top k keys of scores

Notes on Algorithm 2: we select w of the final k
premises based on similarity to each half of h (requir-

ing 2w ≤ k) while still selecting k−2w premises based

on the full h. We check that premises are not selected

multiple times (e.g. when selecting based on hr, rule

out all premises already selected based on hl) to ulti-

mately obtain k distinct premises.

Algorithm 2 Split-Hypothesis Embedding Retrieval

Input: corpus C, hypothesis h, embedding model
Emb, context size k, each-half focused context size w

Output: list of k premises for h

1: `full← Retrieve(C, h, Emb, k − 2w)

2: hl, hr← Emb(left half of h), Emb(right half of h)
3: C := {ci}1≤i≤|C|← Emb(C)
4: scoresl, scoresr ← ∅ (dict)
5: for each ci ∈ C do
6: scoresl[ci] = simcos(ci, hl)

7: scoresr[ci] = simcos(ci, hr)

8: end for

9: scoresl ← sort(scoresl) by value
10: scoresr ← sort(scoresr) by value
11: `l = top w keys in scoresl (*)

12: `r = top w keys in scoresr (*)

13: (*) computed s.t. `l, `r, `full are all distinct

14: return `full ∪ `l ∪ `r

Study 1: Results

2 4 6 8

of Train Examples
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

proof-leaves
proof-steps
proof-intermediates
proof-overall

Figure 1. Few Shot Performance of T5 (Greedy) + GPT

(Search)

Prover Model Leaves Steps

F1 AllCorrect F1 AllCorrect

T5 (Greedy + Search) 86.21 50.00 43.15 35.00

T5 (Greedy) + GPT (Search) 81.21 46.67 45.40 36.67

GPT (Greedy + Search) 63.74 20.00 15.00 10.00

Prover Model Intermediates Overall

F1 AllCorrect AllCorrect

T5 (Greedy + Search) 68.15 41.67 35.00

T5 (Greedy) + GPT (Search) 66.84 43.33 36.67

GPT (Greedy + Search) 50.38 10.00 10.00

Table 1. Results on incorporating GPT-3 prover into NLProofS

pipeline. Best performance bolded, runner-up underlined.

Study 2: Results

Model Retrieval Algorithm Recall@25

Dalvi et. al* [1] – 0.732

SimCSE Baseline (Alg. 1) 0.570

Contriever Baseline (Alg. 1) 0.597

Contriever Split-Hyp (Alg. 2) 0.603

DRAGON-RoBERTa Baseline (Alg. 1) 0.615

DRAGON-RoBERTa Split-Hyp (Alg. 2) 0.643

Table 2. Recall of gold tree premises for each

retrieval model. * indicates that model was

trained on the EntailmentBank dataset. Best

recall bolded, runner-up underlined.

Retrieval Method Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Dalvi 47.73 14.97 15.89 11.23 46.45 20.32 11.23

SimCSE 34.65 8.02 8.65 6.95 36.96 15.51 6.95

DRAGON-RoBERTa 37.38 7.49 9.70 5.88 40.60 17.11 5.88

DRAGON-RoBERTa (split) 39.96 9.09 10.43 6.95 43.25 16.04 6.95

Contriever 37.46 8.56 11.66 7.49 40.34 17.11 7.49

Contriever (split) 37.64 9.09 10.43 8.02 39.47 16.04 8.02

Table 3. Results on running NLProofS pipeline using various retrieval methods. Best

performance bolded, runner-up underlined.

Conclusions and FutureWork

Study 1

gpt-3.5-turbo performs worse than the T5 model for the prover task, and we suspect this is because it is not

trainedwith enough exampleswith in-context-learning. Likely, the model was trained on tasks that were not similar

enough to the EntailmentBank dataset for it to quickly generalize. However, the hybrid model does well because

the addition of gpt-3.5-turbo can do no worse than the initial greedy tree generated by T5.

With these considerations, some future work includes:

1. Fine Tuning: OpenAI allows users to fine tune the gpt-3 weights for a specific dataset, and we suspect this

model would outperform our current results since it could see many more examples of EntailmentBank

compared to in-context learning.

2. GPT-4: Once publically released, gpt-4 has a context size four times larger than gpt-3, and the underlying

model is more powerful. We suspect that these two advantages would allow gpt-4 to outperform our current

method.

Study 2

Overall, our embedding-based retrieval methods have weaker performance compared to Dalvi et al.’s retrieval

approach, with roughly 10% – 15% worse values of Recall@25. However, this is likely a result, at least in part,

of Dalvi et al.’s model being specifically trained on retrieval from WorldTree; our algorithm based on untailored

embeddings, meanwhile, may miss required premises that bear little semantic resemblance to the hypothesis. This

motivates item (1) of our future work.

We do observe slight performance differences between the five methods evaluated, and the split-hypothesis

algorithm does appear to provide a small boost (particularly for DRAGON-RoBERTa, both in retrieval and NLProofS

pipeline results), motivating item (3) of our future work.

Based on these conclusions, some avenues for future work include:

1. Fine-tuning embeddings on EntailmentBank data: Previous information retrieval work has noted the poor

transferability of sentence embeddings across diverse tasks, which we believe leads to a key performance

limitation in our use of pretrained embeddings. Thus, fine-tuning sentence embedding models by training

specifically on EntailmentBank ”relevant fact” data could boost our retrieval’s recall performance.

2. Integrating an iterative retrieval method into NLProofS (inspired by Ribeiro et al. [4]): Rather than retrieving

all the necessary premises up front, the model could leverage intermediate steps to retrieve other related

premises, creating an iterative retrieval process embedded within proof generation.

3. Devising a more sophisticated hypothesis splitting algorithm: Currently, we split hypotheses in half simply by

word count. Future work could find the optimal split location (perhaps a semantic split that most differentiates

the meanings of each half) or explore splitting complex hypotheses in multiple locations.

