
Applying GPT-3 and Dense Embeddings to NLProofS

Roma Bhattacharjee
rb4785@princeton.edu

Arya Maheshwari
arya@princeton.edu

Zachary S. Siegel
zss@princeton.edu

Abstract

Automated reasoning is becoming increasingly
relevant in modern NLP systems, with many
studies focused on the specific task of proof
generation: a model is asked to use a set of
possible supporting facts (premises) to gener-
ate a proof of a given hypothesis via an entail-
ment tree, described by a series of proof steps
that logically combine statements. To this end,
Yang et al. (2022) recently proposed the NL-
ProofS model, which generates entailment trees
by training separate prover and verifier models
for use in a proof search algorithm. We con-
duct two studies to investigate different com-
ponents of NLProofS: we (1) evaluate an alter-
nate approach that uses pre-trained dense em-
beddings for the preliminary task of retrieval
(retrieving premises to use), and (2) study the
effects of using GPT-3 with in-context learning
in place of the prover model. In the first study,
we find that while sentence embedding-based
retrieval underperforms compared to the exist-
ing retrieval method by roughly 10% on a Re-
call@25 metric, the possibility of fine-tuning
and using more sophisticated embedding-based
algorithms present promising avenues for fu-
ture improvement. In our second study, we
find that combining the existing T5 prover and
GPT-3 with in-context learning into a hybrid
model yields an improvement in overall proof
accuracy. Broadly, these results indicate the
feasibility of making modular improvements to
retrieval and the proof model to create stronger
proof generation systems in the future.1

1 Introduction

Modern AI-based explanation systems are often
required to output a rationale behind their answers.
While most systems simply output a couple of lines
of rationale, a more robust goal is to require the

1The code is available at https://github.com/
roma0615/NLProofS and https://github.com/siegelz/
entailment_bank. Note that in the former, our code is split
across multiple branches: retrieval, nlproofs_pipeline,
and gpt.

system to output a structured set of logical steps.
In addition to providing clarity on how explanation
systems arrive at their conclusions, this can also
make training and debugging such systems simpler.
It is therefore a productive goal to research the tasks
of proof generation and automated reasoning in
natural language, which would require a model to
output its chain of logical reasoning when arriving
at a conclusion.

In particular, this problem of proof generation
involves generating a multistep proof tree or “en-
tailment tree” from a given target hypothesis and a
set of assumed statements or premises. Leaf nodes
in the tree represent given premises, and internal
nodes represent intermediate conclusions that are
logically drawn from their (two or more) children.
See Figure 1 for a depiction of such an entailment
tree.

Dalvi et al. (2021) break the problem of proof
generation down by delineate three distinct “tasks"
of varying difficulty on which to evaluate proof
generation models:

1. Task 1: the only premises provided are those
in the original ground truth entailment tree,
so the task is only to determine which proof
steps to generate to ultimately arrive at the

Figure 1: Entailment tree example taken from Dalvi
et al. (2021). White nodes are premises, and blue nodes
are intermediate steps that are required to arrive at the
hypothesis (green node).

https://github.com/roma0615/NLProofS
https://github.com/roma0615/NLProofS
https://github.com/siegelz/entailment_bank
https://github.com/siegelz/entailment_bank

hypothesis.

2. Task 2: some number k of premises (usually
k = 25) are provided, which includes sev-
eral “distractor” premises in addition to the
required premises. Here, the system must not
only generate the correct entailment tree, but
it must also discern which facts are relevant
for the proof in the first place.

3. Task 3: this is a much larger-scale version
of Task 2—it provides as input all 12K facts
from WorldTree, from which the proof gener-
ation system must retrieve premises to use for
a given hypothesis. This process of retrieval
is a non-trivial task that is necessary to apply
proof generation in “real-world” settings, and
has in turn been the focus of other recent re-
search (Neves Ribeiro et al., 2022). It is also
the focus of one of the studies in this paper,
which is discussed further below.

Follow-up work (including ours) follows this three-
task framework in the evaluation of proof genera-
tion models (Dalvi et al., 2021; Yang et al., 2022;
Neves Ribeiro et al., 2022).

Recent work in Yang et al. (2022)’s paper, “Gen-
erating Natural Language Proofs with Verifier-
Guided Search,” introduces a method called NL-
ProofS, which sets out to tackle the issue of provers
“hallucinating” proof steps. This occurs when the
model, being aware of the target hypothesis, cre-
ates proof steps that do not actually logically entail
from the premises it chooses. Attempting to mit-
igate this result by removing the hypothesis from
the prover’s input leads to the opposite problem;
without knowledge of the hypothesis, the prover is
much more likely to meander and generate irrele-
vant proof steps.

NLProofS aims to solve this hallucination prob-
lem by training a separate verifier model based on
RoBERTa (Liu et al., 2019) to score the logical
validity of a given proof step. This is used to score
each step that their prover—a fine-tuned T5 model
(Raffel et al., 2020)—generates. At inference time,
NLProofS first greedily generates a high-scoring
proof, and then non-greedily searches for the proof
that achieves the highest aggregate validity score
across many possible proof paths.

Our work performs various experiments with
the goal of improving upon NLProofS’s baseline.
Given that the two broad tasks for proof generation
are (1) premise retrieval (relevant in particular to

Task 3) and (2) proof generation, we conduct two
separate studies that cover these areas:

1. Retrieval using (dense) sentence embed-
dings. Yang et al. (2022)’s contribution is
the pairing of a prover and verifier for entail-
ment tree generation; they do not explicitly
focus on retrieval. Dalvi et al. (2021) train a
retrieval model based on BERT (Devlin et al.,
2018) and RoBERTa (refer to Appendix A in
their paper for details), and NLProofS simply
uses the results returned from that same model
when evaluating performance in the Task 3
setting. This first study evaluates NLProofS’s
performance with alternative retrieval meth-
ods that use pre-trained dense sentence em-
beddings to see if gold tree premise recall can
be improved.

2. Replacing NLProofS’s T5 prover with GPT-
3 + in-context learning. NLProofS’s ar-
chitecture implements a stepwise prover by
fine-tuning a T5 model. Yang et al. (2022)
performed an ablation that showed that us-
ing GPT-3 to generate the entire proof at
once (“single-shot”) performed worse than
NLProofS, but they did not try using GPT-
3 with in-context learning to only generate
stepwise proofs. Thus, this study investigates
NLProofS’s performance after replacing just
the T5 prover model with GPT-3.

In our first study, we find that the pre-trained
embedding-based retrieval methods perform worse
than Dalvi’s retrieval model—this is not surpris-
ing, since Dalvi’s model was specifically trained
on the retrieval task, while our embedding-based
approaches used pre-trained embeddings. The sec-
ond study finds that while GPT-3 alone fails to meet
the baseline set by NLProofS’s T5 prover, using
a hybrid of both—T5 for greedy proof generation
and GPT-3 for non-greedy proof search—does re-
sult in improved performance. Ultimately, these
results indicate that it may be fruitful to consider
alternative or hybrid approaches to retrieval and
proof generation methods.

2 Related Work

In past research, generating natural language proofs
has been attempted in two broad ways. One is to
generate all proof steps at once (called a “single-
shot” approach), and one is to generate proof steps

and intermediate conclusions one at a time (“step-
wise” approach). Empirically, the stepwise ap-
proach performs better than single-shot approaches,
perhaps because generating a single entailment step
is less complex than generating an entire proof all
at once, and training a model on individual steps
can also be better generalized to other examples
(Tafjord et al., 2021; Yang et al., 2022). Since
NLProofS takes a stepwise approach to proof gen-
eration, our work also only focuses on stepwise
generation.

Recent work by Neves Ribeiro et al. (2022) in-
vestigates iterative retrieval methods as a way to
improve relevant premise recall. The motivation
is that iterative retrieval allows the model to use
generated intermediate steps to fetch related and
relevant premises for making further steps, rather
than having to intuit which premises will be use-
ful at the beginning. While our first study only
investigates non-iterative retrieval in tandem with
NLProofS, we do identify integrating a variant of
Ribero’s iterative retrieval into NLProofS as a com-
pelling avenue of future work.

3 Datasets

To more easily research the proof generation prob-
lem, Dalvi et al. (2021) curated a dataset called
ENTAILMENTBANK. The dataset consists of 1,840
examples of question/answer pairs and the mul-
tistep entailment trees necessary to arrive at the
answer, generated from ARC science and general
knowledge questions. The premises in each tree
are sourced from the WorldTree V2 corpus, which
contains 11,941 facts about general knowledge and
science (Jansen et al., 2018; Xie et al., 2020).

In more detail, each example in ENTAILMENT-
BANK consists of a target hypothesis, a “context”
string containing the input premises, and a mul-
tistep entailment tree of how to arrive at the hy-
pothesis from the relevant premises. The dataset
is partitioned into train (1313 examples), valida-
tion (187 examples), and test sets (340 examples).
There are three versions of the dataset, one for each
task, as described in the introduction. The only
aspect of the data that varies between versions is
the “context”—the input to the proof generation
task. Task 1 and Task 2 contexts are as described
in the introduction; to populate the contexts in the
Task 3 dataset, Dalvi uses their retrieval model to
score all the facts in WorldTree V2 according to
their relevance to each example’s hypothesis, and

returns the top 25.
ENTAILMENTBANK also contains annotations

about “relevant facts” for each example. While
we do not use these annotations in our studies, we
do discuss its potential use in our proposed future
work (see Section 6.1).

4 Methods

4.1 Study 1

As described above, the task of retrieval involves
retrieving, for a given hypothesis h , k facts from a
much larger corpus of facts C (i.e. k ≪ |C|) to be
used as premises for generating the entailment tree
of h . Retrieval is thus a crucial preliminary step of
the proof generation pipeline in the more general
setting defined by Task 3, where correct premises
are not given to the model. In this first study, we
focus on this retrieval phase in the context of NL-
ProofS by investigating the effects of replacing the
k = 25 premises used by Yang et al. for Task 3
(obtained via the outputs of Dalvi et al.’s retrieval)
with an alternate retrieval approach that employs
sentence embeddings to retrieve premises from the
WorldTree corpus for a given hypothesis.

Recent work in information retrieval has sug-
gested that dense embeddings have the potential
to provide simpler, more efficient (and thus more
practical) methods for retrieval in real-world sce-
narios, if they can be developed to yield sufficiently
good performance (Lin et al. (2023), Thakur et al.
(2021)). The key idea that motivates applying this
approach to entailment tree premise retrieval is the
following: intuitively, facts that score highly in
terms of embedding similarity to a given hypothe-
sis seem likely to be relevant premises in proving
that hypothesis. As such, our high-level idea is
to map a given hypothesis h and all facts in the
WorldTree corpus C to dense vectors using a sen-
tence embedding model, and to then quantify the
relevance of candidate premises to the hypothesis
through a vector similarity metric, ultimately using
this score to determine which premises to retrieve
from C for h.

To this end, we first implement a baseline re-
trieval algorithm that simply returns the k premises
that, as embeddings, yield the highest cosine simi-
larity score to the hypothesis embedding (see pseu-
docode in Algorithm 1; we set k = 25 like in
Yang et al.). We evaluate performance of the al-
gorithm on the retrieval task by computing recall
(i.e. Recall@25) of the premises used in the gold

Algorithm 1 Baseline Embedding Retrieval
Input: corpus C, hypothesis h , embedding

model Emb, context size k
Output: list of k premises for h

1: procedure BASERETRIEVE

2: h← Emb(h)

3: C := {ci}1≤i≤|C| ← Emb(C)
4: scores← ∅ (dict)
5: for each ci ∈ C do
6: scores[ci] = simcos(ci,h)
7: end for
8: scores← sort(scores)
9: in descending order by value

10: return top k keys of scores
11: end procedure

entailment tree. We additionally run the retrieved
premises through the trained NLProofS model to
evaluate the “full pipeline” performance against the
baseline.

To generate the embeddings themselves, we
experiment with three sentence embedding mod-
els that are pre-trained on other (different) in-
formation retrieval tasks: SimCSE (Gao et al.,
2021), Contriever (Izacard et al., 2021), and
DRAGON-RoBERTa (Lin et al., 2023).2

Manual inspection of results from Algorithm 1
on validation data showed that the premises missed
by our retrieval were often shorter facts less similar
to the full hypothesis but necessary as “building
blocks” in the final reasoning (e.g. facts like “an
astronaut is a kind of human” for obtaining the
final hypothesis “an astronaut requires oxygen in
a spacesuit backpack to breathe” as shown in the
Figure 1 entailment tree). This suggests one weak-
ness of our underlying assumption that required
premises will all be similar to the full hypothesis:
some required building block premises may in fact
bear little resemblance to the hypothesis, and thus
will not be retrieved with this naive similarity score
approach.

Based on this observation, as a first step in
refining the baseline algorithm to overcome this
limitation, we implement a modified algorithm

2Specifically, we use the supervised SimCSE model initial-
ized with BERT base (bert-base-uncased on HuggingFace)
and trained on MNLI/SNLI datasets; and the base (unsuper-
vised) Contriever model, trained with data from CC-net and
Wikipedia. Dragon-RoBERTa is a specific RoBERTa-based
model in the DRAGON family, which is based on the idea of
diverse augmentation. All of these models use a contrastive
learning framework.

Algorithm 2 Split-Hypothesis Embedding Re-
trieval

Input: corpus C, hypothesis h , embedding
model Emb, context size k, each-half focused con-
text size w

Output: list of k premises for h

1: procedure SPLITHYPRETRIEVE

2: ℓfull ← BaseRetrieve(C, h , Emb, k − 2w)
3: hl ← Emb(right half of h)
4: hr ← Emb(right half of h)
5: C := {ci}1≤i≤|C| ← Emb(C)
6: scoresl, scoresr ← ∅ (dict)
7: for each ci ∈ C do
8: scoresl[ci] = simcos(ci,hl)
9: scoresr[ci] = simcos(ci,hr)

10: end for
11: scoresl ← sort(scoresl) by value
12: scoresr ← sort(scoresr) by value
13: ℓl = top w keys in scoresl (*)
14: ℓr = top w keys in scoresr (*)
15: (*) ensuring ℓl, ℓr, ℓfull are all distinct
16: return ℓfull ∪ ℓl ∪ ℓr
17: end procedure

(see pseudocode in Algorithm 2) that selects some
premises based on similarity to part of the hypoth-
esis rather than the full statement. In particular, we
split the hypothesis h into two halves and select
w of the final k premises based on similarity to
each half (requiring 2w ≤ k), while still selecting
k − 2w premises based on the full h (and ruling
out premises we have already selected at each step
of selection, to ensure the final k are all distinct). 3

Finally, we evaluate each of these retrieval meth-
ods by passing them through the full Task 3 NL-
ProofS pipeline. In particular, we run the NL-
ProofS model trained on Task 2 and evaluate its
zero-shot performance on Task 3,4 using each set of
retrieved premises corresponding to each of the six
combinations of the embedding models (SimCSE,
Contriever, DRAGON-RoBERTa) and retrieval algo-
rithms (Algorithm 1 or 2).

4.2 Study 2

In the second study, we replace the T5 prover with
gpt-3.5-turbo (Ouyang et al., 2022) for step-

3We briefly discuss alternate splitting implementations in
the conclusions and future work section; see 6.1)

4Yang et al. also evaluated its performance on Task 3 in
this way.

wise proof generation. We theorize that since
gpt-3.5-turbo was trained on a much larger
dataset than T5, it could use additional its back-
ground knowledge to help at the proof completion
task by reasoning with knowledge from different
domains.

We train gpt-3.5-turbo using in-context learn-
ing since fine-tuning would be cost prohibitive.
We utilize the same training data and dataloader
of the original NLProofS methodology. We
randomly sample proof examples to feed into
gpt-3.5-turbo. The number of training exam-
ples is limited by the maximum number of tokens
gpt-3.5-turbo can take, 4096 tokens. This token
limit allows for a maximum of about 8 examples.

In the first experiment, we replace the entire
T5 model with gpt-3.5-turbo for both the initial
greedy tree generation and for the search method.
Therefore, the model works by generating a proof-
tree, step-by-step, using gpt-3.5-turbo. How-
ever, as seen in Table 3, this model performs poorly.

In the second experiment, we elect to use hybrid
between the T5 and gpt-3.5-turbo provers since
gpt-3.5-turbo did not perform well. Specifically,
we use T5 when generating the initial greedy tree
in the NLProofS search algorithm, and then use
gpt-3.5-turbo during non-greedy graph search
to improve upon the initial generated tree. This
method ensures that the model performance never
gets worse than the baseline greedy method, since
we use T5 to generate a baseline tree, and then
only use the suggestions of gpt-3.5-turbo when
it improves upon the initial greedily generated tree,
as determined by the verifier score.

Model Retrieval Algorithm Recall@25

Dalvi et al.* – 0.719
SimCSE Baseline (Alg. 1) 0.530
SimCSE Split-Hyp (Alg. 2) 0.569

Contriever Baseline (Alg. 1) 0.570
Contriever Split-Hyp (Alg. 2) 0.586

DRAGON-RoBERTa Baseline (Alg. 1) 0.603
DRAGON-RoBERTa Split-Hyp (Alg. 2) 0.625

Table 1: Recall of gold tree premises for each retrieval
model (test set). * indicates that model was trained on
the ENTAILMENTBANK dataset. Best recall bolded,
runner-up underlined.

2 4 6 8

of Train Examples
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

proof-leaves
proof-steps
proof-intermediates
proof-overall

Figure 2: Few Shot Performance of T5 (Greedy) + GPT
(Search)

5 Results

5.1 Study 1
Table 1 presents the average Recall@25 of the six
combinations of sentence embedding models and
retrieval algorithms compared to Dalvi et al.’s re-
trieval across the 340 examples of the ENTAIL-
MENTBANK test dataset. Overall, our embedding-
based retrieval methods have weaker performance
compared to Dalvi et al.’s retrieval approach, with
roughly 10% – 15% worse values of Recall@25.
However, this is likely a result, at least in part, of
Dalvi et al.’s model being specifically trained on
retrieval from WorldTree data, while our algorithm
is based on non-tailored, pre-trained embeddings.

Table 2 presents the final performance results
after running each retrieval method through the full
NLProofS pipeline. That is, for each example in the
test set for Task 3, we replace the original context
with the custom retrieved context from each evalu-
ated method, and score the accuracy of leaf nodes,
structural steps, and intermediate nodes. Results
seem to follow those presented in Table 1—higher
premise retrieval recall scores loosely correspond
with higher F1 and accuracy scores in proof gen-
eration. This makes sense, since the prover would
not be able to perform accurately if it doesn’t have
all the required premises at its disposal to build the
proof tree.

We do observe slight performance differences
between the three sentence embedding models that
aligns with reported performance of the three mod-
els in previous work (Lin et al., 2023; Gao et al.,
2021; Izacard et al., 2021); furthermore, the split-
hypothesis algorithm does provide a small perfor-
mance boost (both in retrieval and the full NL-

Retrieval Method Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Dalvi 43.33 8.82 10.48 6.76 42.97 16.76 6.76
SimCSE 34.66 6.76 8.17 5.88 36.72 14.41 5.88
SimCSE (split) 37.15 8.24 9.86 6.76 37.95 15.59 6.76
Dragon 37.65 7.65 9.26 6.47 37.95 14.12 6.47
Dragon (split) 40.15 8.53 10.02 6.76 40.59 16.18 6.76
Contriever 37.23 7.94 9.81 6.47 39.12 16.47 6.47
Contriever (split) 37.22 7.06 9.18 5.88 38.44 15.00 5.88

Table 2: Results on running NLProofS pipeline using various retrieval methods (test set). Best performance bolded,
runner-up underlined.

Prover Model Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

T5 (Greedy + Search) 86.21 50.00 43.15 35.00 68.15 41.67 35.00
T5 (Greedy) + GPT (Search) 81.21 46.67 45.40 36.67 66.84 43.33 36.67
GPT (Greedy + Search) 63.74 20.00 15.00 10.00 50.38 10.00 10.00

Table 3: Results on incorporating GPT-3 prover into NLProofS pipeline. Best performance bolded, runner-up
underlined.

ProofS pipeline result) for all three methods, sug-
gesting the utility of such a finer-grained handling
of the hypothesis and motivating the last point in
our future work (Section 6.1.1).

5.2 Study 2

As shown in Table 3, replacing T5 with
gpt-3.5-turbo for both the initial greedy tree gen-
eration and also the proof search method yields
poor results. We hypothesize this is due to the lack
of in-context examples we could use when training
gpt-3.5-turbo. Since we are limited by context-
size and the proof generation task is different
from the underlying distribution gpt-3.5-turbo
is trained on, we would likely need a larger context
size for it to learn effectively. Based on manual in-
spection of the results, we see that gpt-3.5-turbo
will often generate invalid syntactic steps (for in-
stance, it will generate a proof step and then at-
tempt to explain the step in natural language) which
causes a lower accuracy score.

The hybrid approach of using T5 for initial
greedy tree generation and gpt-3.5-turbo for the
proof search algorithm yields much better results,
in some cases outperforming the full T5 model.
Since T5 is used to generate the initial greedy tree,
gpt-3.5-turbo can never do worse than greedy
T5, which helps explains the good results. But
then, gpt-3.5-turbo can make improvements to

the initial greedily generated tree, which boosts the
results even further.

To further demonstrate the impact of
gpt-3.5-turbo in the proof search algo-
rithm, we plot the accuracy as a function of the
number of examples used for in-context learning in
Figure 2. As seen, the accuracy never drops below
a certain value, even when using a few in-context
examples because the model relies completely
on the initial greedily generated tree. However,
the results marginally improve when increasing
the number of in-context examples, showing the
additional benefit gpt-3.5-turbo confers on
overall performance.

6 Conclusions and Future Work

6.1 Study 1
Based on our observed results from Study 1, we
ultimately conclude that using pre-trained embed-
dings does not achieve strong performance com-
pared to Dalvi’s model, which was trained specif-
ically for retrieval. This indicates that premise
retrieval is indeed a complex task that simple sim-
ilarity scoring cannot fully capture. It has been
widely noted in the literature (e.g. as in Thakur
et al. (2021); Dai et al. (2022)) that retrievers gen-
eralize poorly to datasets across different domains,
for example due to different notions for “relevance”
that vary significantly. This perhaps explains why

our algorithm may be missing required premises
that bear little semantic resemblance to the hypoth-
esis, and is a key performance limitation in our use
of pre-trained embeddings.

We also note that the split-hypothesis algorithm
does seem to improve recall performance (and con-
sequently the full NLProofS pipeline performance),
which indicates that it may be worthwhile to con-
sider alternate ways of drawing out relevant infor-
mation from the hypothesis; this can be done with a
more sophisticated splitting algorithm, or perhaps
even by referencing intermediate proof steps to
draw out further relevant information for additional
premise recall.

These conclusions motivate the following pro-
posed avenues for future work:

1. Fine-tuning embeddings on ENTAILMENT-
BANK data: To improve the performance
of retrieval based on dense embeddings, we
propose fine-tuning sentence embedding mod-
els by training specifically on ENTAILMENT-
BANK’s “relevant fact” data, which could
boost our retrieval’s recall performance.

2. Devising a more sophisticated hypothesis
splitting algorithm: Currently, we split hy-
potheses in half simply by word count. Future
work could find the optimal split location (per-
haps a semantic split that most differentiates
the meanings of each half) or explore splitting
complex hypotheses in multiple locations.

3. Integrating an iterative retrieval method
into NLProofS: Rather than retrieving all
the necessary premises up front, the model
could leverage intermediate steps to retrieve
other related premises, creating an iterative
retrieval process embedded within proof gen-
eration. This method was first introduced by
Neves Ribeiro et al. (2022), and demonstrated
strong results.

6.2 Study 2

Although our results from combining
gpt-3.5-turbo with T5 produces slightly
better results with some metrics, there is still room
for future improvement. The main goal would be
to improve the quantity and quality of training
examples fed into gpt-3.5-turbo, which is a
major current bottleneck. Such improvements
include:

1. Fine-Tuning: OpenAI allows users to fine
tune the gpt-3 weights for a specific dataset,
and we suspect this model would outperform
our current results since it could see many
more examples of ENTAILMENTBANK com-
pared to in-context learning.

2. GPT-4: Once publicly released, gpt-4 has a
context size four times larger than gpt-3, and
the underlying model is more powerful. We
suspect that these two advantages would allow
gpt-4 to outperform our current method.

3. Tailored Examples: We have currently been
using a static set of training examples for the
in-context learning. However, if we chose
in-context examples that are similar to the
specific hypothesis we wish to prove, those
examples could boost the performance of the
model since its task would be more similar to
the training examples.

Acknowledgements

We thank Prof. Danqi Chen for her guidance
throughout this project and Tianyu Gao for cor-
respondence regarding SimCSE.

References
Zhuyun Dai, Vincent Y. Zhao, Ji Ma, Yi Luan, Jianmo

Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith B.
Hall, and Ming-Wei Chang. 2022. Promptagator:
Few-shot dense retrieval from 8 examples.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. In Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense infor-
mation retrieval with contrastive learning.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A corpus of explanation graphs for elementary sci-
ence questions supporting multi-hop inference. In

http://arxiv.org/abs/2209.11755
http://arxiv.org/abs/2209.11755
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://doi.org/10.48550/ARXIV.2112.09118
https://doi.org/10.48550/ARXIV.2112.09118
https://aclanthology.org/L18-1433
https://aclanthology.org/L18-1433
https://aclanthology.org/L18-1433

Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz,
Jimmy Lin, Yashar Mehdad, Wen tau Yih, and Xilun
Chen. 2023. How to train your dragon: Diverse
augmentation towards generalizable dense retrieval.
arXiv e-print 2302.07452.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Danilo Neves Ribeiro, Shen Wang, Xiaofei Ma, Rui
Dong, Xiaokai Wei, Henghui Zhu, Xinchi Chen,
Peng Xu, Zhiheng Huang, Andrew Arnold, and Dan
Roth. 2022. Entailment tree explanations via itera-
tive retrieval-generation reasoner. In Findings of the
Association for Computational Linguistics: NAACL
2022, pages 465–475, Seattle, United States. Associ-
ation for Computational Linguistics.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark.
2021. Proofwriter: Generating implications, proofs,
and abductive statements over natural language.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogenous benchmark for zero-shot evalu-
ation of information retrieval models. CoRR,
abs/2104.08663.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. WorldTree v2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In Proceedings
of the Twelfth Language Resources and Evaluation
Conference, pages 5456–5473, Marseille, France. Eu-
ropean Language Resources Association.

Kaiyu Yang, Jia Deng, and Danqi Chen. 2022. Gen-
erating natural language proofs with verifier-guided
search. In Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

https://arxiv.org/abs/2302.07452
https://arxiv.org/abs/2302.07452
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.findings-naacl.35
https://doi.org/10.18653/v1/2022.findings-naacl.35
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/2012.13048
http://arxiv.org/abs/2012.13048
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
http://arxiv.org/abs/2104.08663
https://aclanthology.org/2020.lrec-1.671
https://aclanthology.org/2020.lrec-1.671
https://aclanthology.org/2020.lrec-1.671

