
COS/ECE 473

Elements of Decentralized Finance

Investigating incentive compatible AMMs in binary prediction markets1

Authors:

Arya Maheshwari
Janum Shah
Abiram Gangavaram

arya@princeton.edu

jpshah@princeton.edu

abiramg@princeton.edu

2022-2023 – Spring Semester

1The code for this project can be found in our GitHub repository here. The PredictionMarkets.ipynb
notebook contains our Python simulation code and our smart contract Solidity code pasted in, while the
solidity folder contains our smart contract code and Truffle testing suite.

https://github.com/amaheshwari25/ECE473/tree/main
https://github.com/amaheshwari25/ECE473/blob/main/PredictionMarkets.ipynb

COS/ECE 473 Princeton University

Contents

1 Introduction 2
1.1 Prediction Markets . 2
1.2 Why in DeFi? . 2
1.3 Our Work . 2

2 Theory 3
2.1 Scoring Rules . 3
2.2 Construction of Automated Market Makers . 3
2.3 Desirable Properties in AMMs . 4
2.4 A Liquidity-Sensitive LMSR AMM . 4

3 Approach 5
3.1 Overview . 5
3.2 Modeling a Prediction Market . 5
3.3 Noisy Information Simulation . 6

4 Results 7

5 DeFi Applications 8
5.1 Smart Contract Development in Solidity . 9
5.2 Augur and Gnosis . 9
5.3 Zeitgeist PM and the Rikkido Scoring Rule . 10

6 Conclusion and Future Work 10
6.1 Discussion . 10
6.2 Future Work . 10

7 Code 11

Appendices 12

A Additional results on revenue vs. accuracy 12

B Investigations of Zeitgeist’s Rikkido Scoring Rule 12

1

COS/ECE 473 Princeton University

1 Introduction

1.1 Prediction Markets

Prediction markets are financial markets where participants can trade securities correspond-
ing to the outcomes of prediction markets. In this work, we focus on binary prediction markets,
in which exactly one outcome will occur, meaning only a single security out of the set of pos-
sibilities will eventually pay out. Prediction markets rely on scoring rules to quantify how
to reward participants for the accuracy of their bets; this means that scoring rules should be
designed to incentive participants to trade truthfully. Scoring rules that adhere to this property
are incentive compatible or strictly proper [12].

1.2 Why in DeFi?

The former CTO of Coinbase, Balaji Srinivasan, claimed that “Blockchain-based prediction
markets may be the one force strong enough to counterbalance the spread of incorrect informa-
tion on social media. They give people a financial incentive to seek the truth and then protect
them with the twin shields of pseudonymity and decentralization” [1]. Decentralized prediction
markets can help mitigate the spread of misinformation if they can properly incentivize market
participants to trade truthfully. Unlike traditional markets, where one centralized party con-
trols the pricing, decentralized markets allow market participants to collectively price assets
automatically based on their beliefs. This means decentralized prediction markets are faster,
cheaper, and more secure to operate. From a participant’s point of view, they are also more
fair and transparent.

Decentralized prediction markets leverage Automated Market Makers (AMMs) to continu-
ously provide liquidity to the market. Generally, any market can suffer from a lack of liquidity,
and in many financial markets, the responsibility to keep the market liquid falls on large fi-
nancial institutions. With AMMs, however, asset prices are continuously priced using specific
pricing algorithms, meaning that participants can always interact with the market when they
want to. AMMs are the key driver of a fair and transparent model in decentralized prediction
markets.

1.3 Our Work

We are primarily interested in investigating the behavior of AMMs based on different scor-
ing rules. In this work, we build a simulation for a decentralized prediction market powered
by an AMM. We implement the Logarithmic Market Scoring Rule (LMSR) [6] and its more
sophisticated variant, the Liquidity Sensitive Logarithmic Market Scoring Rule (LS-LMSR),
introduced in [10], and compare their behavior across various metrics.

This work is important in understanding the benefits and drawbacks of various scoring
rules for those interested in deploying their own prediction markets. dApps like Augur [8]
and Gnosis [7] have already built platforms for easy-to-deploy prediction markets, and the
popularity of these platforms is only growing. As such, this work is fundamental for traders
and market owners who are looking to get a better, more comprehensive understanding of how
scoring rules power AMMs and their differing effects in practice.

2

COS/ECE 473 Princeton University

2 Theory

2.1 Scoring Rules

We begin by formalizing the theoretical underpinnings of the specific AMMs we aim to
investigate in the contet of prediction markets. The starting point for this is the concept of
a scoring rule: a function that maps a participant’s reported belief vector x on the outcome
that will occur (a probability distribution over the n possible market outcomes) and the final
outcome i to a payout. Mathematically, a scoring rule is a function S s.t. S(x, i) ∈ R.

To elicit the best information, we want to design scoring rules that incentivize honest reports.
This desired property leads to the definition of a strictly proper scoring rule, a scoring rule
S(x, i) in which a participant’s expected payoff is maximized if they report their true belief p:
mathematically, such that p = argmaxx Ei∼p[S(x, i]. Among the most widely studied strictly
proper rules due to its simple form is the logarithmic scoring rule, defined by S(x, i) = log xi.

The first step towards implementing a scoring rule S(x, i) in real-world prediction markets
is to adapt it into a market scoring rule (MSR), a construction that can handle multiple market
participants. Specifically, in a market with multiple traders acting sequentially, at each time
step j, a MSR maintains a current prediction x (initialized arbitrarily) and asks trader j to
report their prediction xj, then updating x ← xj for time step j + 1. When an outcome i is
eventually realized, the trader at each time step j receives payout S(xj, i)−S(xj−1, i) [12]. For
example, this construction is known as the logarithmic market scoring rule (LMSR) when the
logarithmic scoring rule is used as S(x, i) [6].

2.2 Construction of Automated Market Makers

The key idea that bridges MSRs and real-world prediction markets is that prediction re-
porting in an MSR can be implemented in an equivalent yet more practical way by designing an
Automated Market Maker (AMM) with a specific price function, where traders now buy/sell
shares to update the market prediction but face the same incentives as if they were interacting
with a MSR [4,5, 12].

Recall that AMMs allow traders to continuously interact with the market by setting a price
function for buying/selling shares. We represent the state of the market through a quantity
vector q (initialized to some starting q0) where each component qi represents the net shares
of outcome i that have been bought. The AMM price function is then a map p(q) from q to
a vector of prices, where pi(q) is the price for a share for outcome i. The cost of executing a
trade q′ starting from state q0 is given by∫ q′

0

n∑
i=1

pi(q0 + x)dx.

Then, the idea is that to implement a MSR based on some S(q, i), we can set the price
function p(q) accordingly such that traders face the same incentives with the AMM as in the
MSR. Formally, for any trade q′ starting from state any q0, and any eventual outcome i, the
eventual profit from q0 → q0 + q′ should be equal to the profit from updating from p(q0) →
p(q0 + q′) in the MSR. (Note the idea of market prices being interpreted as probabilities: we
view p as a normalized price here.)

3

COS/ECE 473 Princeton University

An example of this for the LMSR is demonstrated in Theorem 5.1 in [12]. Specifically, an

AMM based on the LMSR (henceforth the “LMSR AMM”) has price pi(q) =
eqi/b∑n

j=1 e
qj/b

= ∂C(q)
∂qi

,

where C(q) = b ln
∑n

j=1 e
qj/b is the cost function (for some liquidity parameter b).

2.3 Desirable Properties in AMMs

The following are three main properties we would want when designing an AMM [10]:

1. Path independent: If the cost of a transaction is determined only by the initial and
final market states, not the path taken in between. Without path independence, an
AMM will be vulnerable to arbitrage: a “money pump” where a trader can go from state
q1 → q2 → q1 using different paths and end up with a profit.

2. Translation invariant: If the prices sum to one, i.e.
∑

i pi(q) = 1. Among a few
other useful properties, an important practical consequence is that prices can be directly
interpreted as current market beliefs of probabilities of outcomes.

3. Liquidity sensitive: If price elasticity adjusts based on the volume of market activity.
Formally, an AMM is liquidity insensitive if p(q + k1) = p(q) for all k, q. The idea is
that a liquidity sensitive market is more realistic than a liquidity insensitive one, as a
trade of some fixed amount should influence prices less in a more liquid market than a
less liquid one.

Note that path independence automatically holds if the price function pi(q) =
∂C(q)
∂qi

(i.e. can

be represented as the gradient of some cost function); then, the cost of a transaction q1 → q2

to the trader is always C(q2)− C(q1) (over any path).
The LMSR AMM satisfies properties 1 and 2 but not property 3. In fact, Othman et. al

prove in [10] that it is impossible for any AMM to satisfy all three properties.

2.4 A Liquidity-Sensitive LMSR AMM

The AMM that is the focus of our investigation is the liquidity sensitive LMSR (LS-LMSR)
AMM proposed by Othman et al. [10], a modification of the LMSR AMM that relaxes trans-
lation invariance in favor of liquidity sensitivity. The LS-LMSR AMM is defined by the cost
function

C(q) = b(q) ln
n∑

j=1

eqj/b(q)

where b(q) = α
∑

i qi for some parameter α. Specifically, the fixed b parameter of the LMSR
now becomes a function of market quantity, which is what makes this AMM liquidity sensitive
— such that the price of a fixed-size transaction decreases as q increases in magnitude (see
Figures 2 and 3 of [10]).

According to the theory presented in [10], the LS-LMSR offers benefits both as a more
realistic model that responds to liquidity changes but also in terms of final AMM revenue.
The LMSR AMM is expected to run at a loss as long as final market prices are more accurate
than initial ones (viewed as the “price of information” in prediction markets); meanwhile, the

4

COS/ECE 473 Princeton University

LS-LMSR is expected to have less loss than LMSR, even yielding a profit in a range of final
conditions. 2

Our project goal is thus to investigate the performance and properties of the LS-LMSR
AMM compared to the LMSR AMM in practice, via a simulation of prediction markets based
on both of these AMMs, and to understand how it may fit into the broader DeFi context by
implementing a smart contract and looking into various applications.

3 Approach

3.1 Overview

To investigate the characteristics of the LS-LMSR AMM applied to a binary prediction
market compared to those of an LMSR AMM, we conducted a simulation-based study in
Python. By iterating on an initial simulation design using traders with perfect information,
we ultimately designed a more realistic Noisy Information Market, more accurately modeling
each trader’s beliefs as a weighted average of (1) “private information” drawn uniformly from
an interval around the ground truth and (2) an average of previous market beliefs. We update
the weighting over time so traders are increasingly influenced by market perception as time
goes on, representing a converging market belief. We varied the ground truth distributions
and the number of traders to understand how different events behave in both markets, and we
also varied α for the LS-LMSR AMM to investigate the impact of the hyperparameter on the
AMM’s performance and accuracy.

3.2 Modeling a Prediction Market

We first need to be able to set up a model for simulating a general prediction market. While
designing an reasonable simulation, we identify a set of realistic properties that we wanted our
market simulation to adhere to:

1. Each event has a ground truth probability for each outcome.

2. All the traders’ personal beliefs before participating in the market resemble some reason-
able distribution surrounding this ground truth (but in general, they don’t exactly know
the ground truth).

3. Traders’ beliefs periodically update to reflect the current market’s beliefs. That is, each
trader’s belief should be influenced to some degree by the overall market.

4. Market participants act optimally; if their expected value from trading an outcome (based
on current their individual belief) is positive, they will always continue to trade that
outcome.

5. Over time, the market beliefs should more or less converge (rather than diverge or ran-
domly oscillate).

2We note that since the original LS-LMSR paper, other scoring rules based on the LS-LMSR have recently
been developed — such as Zeitgeist’s Rikkido scoring rule [11], which aims to make LS-LMSR respond dynam-
ically to market volatility and is discussed further in Section 5.3 and Appendix B.

5

COS/ECE 473 Princeton University

6. At the end of each trial, the actual outcome should be realized by drawing from the initial
ground truth distribution.

Collectively, these properties guide our design of the noisy information prediction market sim-
ulation we present below.

3.3 Noisy Information Simulation

To compare a LMSR AMM and a LS-LMSR AMM in our Noisy Information Simulation,
we start by setting up two prediction markets, one for LMSR and one for LS-LMSR, for a
sequence of N traders to interact with. We focus on n = 2 outcome markets for simplicity
(so we represent the ground truth probability distribution with the probability p of outcome 1
occurring).

Algorithm 1 presents a detailed description of our noisy market simulation procedure for a
given market. In each simulation trial, we first initialize each market with an initial quantity
q0, a ground truth probability p, and the α parameter for LS-LMSR or b parameter for LMSR.
For each trader t (acting in round t) in the sequence of N traders, an initial belief xt is drawn
uniformly from an interval around p. Then, the idea is that each trader t will update their
belief to be a weighted average of this initial belief and the “market belief” at round t, which we
model as the average (normalized) market price across a recent period of rounds. Furthermore,
we employ a variable weighting scheme such that traders in later rounds will weight the market
belief more heavily than traders in earlier rounds. The motivation for these design choices is
that to model how real-world traders use a mix of private and market information and how
real-world market prices converge and get more accurate as more traders participate.

With the beliefs thus determined, the trader t will then pick an outcome i and buy shares
of that outcome while their expected value in doing so is positive, and then we move on to the
next round/trader t+ 1. Note that to evaluate expected value, traders use the price pi(q) and
their actual belief, where we assume they act truthfully because we base the AMMs on a strictly
proper scoring rule. At the end, we (1) compute the final market price accuracy (interpreting
the prices as probabilities and comparing to the ground truth p); (2) compute the expected
AMM revenue using the AMM’s cost function; and for some experiments (3) actually draw an
outcome and compute the resulting AMM revenue.

Note: To enable a fair basis for comparison between the two markets in a given trial,
when a given α is used in the LS-LMSR AMM, we set the b parameter of the corresponding
LMSR AMM such that the worst-cases losses of both markets are the same (following a similar
practice in [10]), and in a given trial the ground truth probabilities p in each market are the
same. Furthermore, we also have the same N traders interact with each market (i.e. in a given
round t, the traders interacting with each market will have the same behavior model and same
initial belief xt).

Overall, this design enables us an expressive noise-modeling framework that has the capacity
to model many aspects of trader noise and information relevant to real-world markets, which
also can be fine-tuned and experimented with for testing AMMs in future studies. Out of the
parameters used in the simulation (see Algorithm 1), the following remain fixed throughout our
experiments: we always set initial quantity q0 = [100, 100], lookback ℓ = N

4
(a quarter of the

6

COS/ECE 473 Princeton University

Algorithm 1 Noisy Information Simulation

Parameters:
(1) α for LS-LMSR or b for LMSR; (2) initial quantities q0 = [100, 100]
(3) number of traders N ; (4) ground truth range Y = [y1, y2]; (5) private noise σ;
(6) lookback ℓ := N

4 ; (7) weight bounds kmin, kmax; (8) buy fraction ∆

1: Draw p← Y uniformly and initialize market with q0, α or b (LS-LMSR vs LMSR), and p

2: for each round t s.t. 1 ≤ t ≤ N do

3: Initialize Trader t with belief xt ← [p− σ, p+ σ] uniformly ▷ Nb: ensure xt within [0.01, 0.99]

4: k ← kmax + (kmin − kmax)
i−1
N−1 ▷ Variable weighting scheme

5: Set market average m = average p1(q) across last ℓ rounds
6: xt ← kxt + (1− k)m; set belief(1) = xt, belief(2) = 1− xt ▷ Set belief as weighted average

7: Select outcome i s.t. pi(q) < belief(i) (else i = None) ▷ Buy while positive expected value
8: while i is not None do
9: Trader t buys outcome i, amount ∆*qi: qi ← (1 + ∆) ∗ qi ▷ Iteratively buy small increments
10: Set i = None if pi(q) ≥ belief(i)
11: end while
12: end for

13: End simulation: compare p to final market price p1(q) for final market price accuracy

14: Calculate AMM expected revenue based on initial q0, final q, ground truth probability p

15: Draw final outcome j according to ground truth distribution [p, 1− p] to determine actual revenue

Outputs: Final market price accuracy, AMM expected revenue (& optionally: outcome, actual revenue)

total number of traders); weight bounds kmin = 0.2, kmax = 0.6; buy fraction ∆ = 0.02; and
private noise σ = 0.2.3

4 Results

Figure 1 illustrates how final market price accuracy varies with the number of traders N
in our Noisy Information Simulation, shown for α = 0.03 in the LS-LMSR (and corresponding
b = 150.27 in the LMSR) and ground truth p drawn from Y = [0.6, 0.8]. Specifically, we see
that in both AMMs, accuracy increases as the number of traders does. This provides a good
sanity check that our simulation correctly models one of the key principles we laid out based
on real-world markets—that when more traders participate, the market converges towards a
more accurate prediction.

Figure 2 plots the final price accuracy and expected AMM revenue across 100 trials of
the simulation with α = 0.03 and N = 20, illustrating the tradeoff that exists between these
quantities. In particular, we see that accuracy decreases as expected revenue increases and
that the LS-LMSR AMM incurs less of a cost practice than the LMSR AMM (corroborating
the theory presented by [10]) but yields worse accuracies. Intuitively, an inverse correlation
between profit and accuracy makes sense: the AMM extracts more profit from traders when
they bet farther from the ground truth. In simpler terms, the farther a trader’s belief is from
the ground truth, the more the AMM can capitalize on their loss. Refer to Figure 6 in the
Appendix for results showing realized revenue (rather than expected) against final accuracy.

3For a fixed weighting scheme rather than a variable one, simply set kmin = kmax to the desired fixed value.

7

COS/ECE 473 Princeton University

Figure 1: Final price accuracy for LMSR and
LS-LMSR revenue for simulations with vary-
ing numbers of traders. α = 0.03, and ground
truth p drawn uniformly from [0.6, 0.8].

Figure 2: Expected revenue vs. price accu-
racy for both LMSR and LS-LMSR over 100
trials, α = 0.03. Ground truth p drawn from
(0.1, 0.2). Orange and blue vertical lines show
mean accuracy for LS-LMSR and LSMSR, re-
spectively.

Figures 3 and 4 present the resulting final price accuracies and expected AMM revenue
across a range of LS-LMSR α values, again with corresponding LMSR b values set to equalize
worst-case-losses (for N = 20 traders). Figure 3 shows that LMSR accuracy stays near-perfect
across increasing α while LS-LMSR accuracy steadily drops. A possible explanation is that
increasing α in LS-LMSR more strongly penalizes later traders (when market quantities q are
higher) with higher prices, compared to increasing b (not dependent on q) in LMSR, thus
deterring traders from making reports and resulting in worse accuracy with LS-LMSR than
LMSR.

Interestingly, Figure 4 shows that AMM revenue remains roughly constant for both LS-
LMSR and LMSR across α. The LS-LMSR theory presented in [10] suggested broadly that
a higher α could be interpreted as a higher commision (i.e. yielding higher revenue) for the
AMM. However, this claim was based on their derivation of the theoretical upper bound on the
sum of prices given by 1+αn log n (section 4.2 in [10]), which was then interpreted as implying
that LS-LMSR AMM revenue would in theory increase with α; the authors did note that effects
in practice might be ambiguous due to higher prices deterring trades. Our empirical work thus
provides evidence that increasing α indeed has competing effects that in practice cancel out in
terms of effect on AMM revenue.

5 DeFi Applications

We now pivot to investigating applications of prediction markets and AMMs based on these
scoring rules in the broader DeFi context.

8

COS/ECE 473 Princeton University

Figure 3: Final price accuracy for LMSR and
LS-LMSR revenue for simulations across α.
Number of traders set to 20; ground truth p
drawn uniformly from [0.6, 0.8].

Figure 4: Expected revenue for LMSR and
LS-LMSR revenue for simulations across α,
along with worst-case loss. Number of traders
set to 20; ground truth p drawn uniformly
from [0.6, 0.8].

5.1 Smart Contract Development in Solidity

Our inquiry started with our own implementation of a prediction market in Solidity. This
exercise not only helped us gain firsthand experience of the intricacies involved in developing a
prediction market but also the mechanics of the underlying DeFi protocols.

Our smart contract supports the creation of both LS-LMSR and LMSR-based markets, with
specified α and b parameters. To trade an outcome, traders can query the current cost of a
specific trade and then buy shares of a certain outcome by submitting bets. They can redeem
their winnings if the outcome is realized. Additionally, traders can query the current prices
and quantities of different outcomes to observe the current state of the market.

The primary difficulty in building this contract was the implementation of the scoring logic
in the cost and price functions. This was due to the lack of existing support for floating-point
numbers in Solidity. We circumvented this by utilizing a third-party library, PRBMath [2].
However, the floating-point logic in the library drastically increased gas prices and we would
like to explore more gas-efficient alternatives in the future.

We developed our smart contract in Remix and utilized Truffle and Web3.js to test before
deploying. The Truffle testing suite and configuration can be found in our GitHub here. As
a demonstration, we have deployed both LMSR and LS-LMSR versions of our smart contract
(for n = 2 items, α = 0.03 for LS-LMSR and β = 150.27 for LMSR like in our simulations),
linked here: LMSR contract and LS-LMSR contract.

5.2 Augur and Gnosis

In addition to our own prediction market implementation, we explored two existing DeFi
prediction markets: Augur and Gnosis. Augur is a decentralized prediction market platform
that is built on Ethereum. Users can leverage Augur’s smart contracts to both participate
in and create prediction markets mapped to specific events. In markets created with Augur,

9

https://github.com/amaheshwari25/ECE473/tree/main/solidity
https://goerli.etherscan.io/address/0xe6a618bd2367b418e9ea73000d1c416200e4978e
https://goerli.etherscan.io/address/0x5912495db1523240c174476447da57f407a977fe

COS/ECE 473 Princeton University

the underlying AMM is scored using LS-LMSR [8]. Gnosis is similar to Augur, but offers two
choices of AMMs: an LMSR-based AMM and a Constant Product Market Maker (CPMM) [7].

5.3 Zeitgeist PM and the Rikkido Scoring Rule

While researching existing DeFi prediction markets, we encountered the novel “Rikkido”
scoring rule proposed by Zeitgeist PM [11]. The Rikkido scoring rule takes the LS-LMSR and
adapts it based on recently proposed ideas on Dynamic Market Making [9], which allows the
AMM to dynamically adjust its parameters based on market volatility. The key idea is to
modify the cost function to discourage trades in high volatility periods and encourage trades
during low volatility periods; the Rikkido scoring rule thus combines the robust structure of
LMSR, the liquidity sensitivity of LS-LMSR, and the flexibility of dynamic market making.
After reaching out to Zeigeist developers to better understand this emerging rule, we found
that the implementation of Rikkido-based markets in Zeitgeist PM is still in development. We
subsequently conducted a preliminary numerical study of Rikkido, described in Appendix B.

6 Conclusion and Future Work

6.1 Discussion

As the relevance of DeFi prediction markets grows, it’s important to have a comprehensive
understanding of the scoring rules behind various AMMs we use as both traders and market
owners. In this work, we see that LMSR and LS-LMSR are both high-quality options on which
to base AMMs, but depending on a market owner’s priorities, one may be more performant
than the other. This work, however, only touches the surface of investigation into this field.
The growing marketplace of DeFi prediction markets warrants even more research in this area.

6.2 Future Work

A first avenue for future work involves developing on the simulation and noisy prediction
market model we present. Future investigations could experiment with more sophisticated
market/trader models and also different market conditions: while we draw a static ground
truth at the start, it would be interesting to investigate how the different AMMs perform
in markets with (1) an ”information shock” (representing an event that drastically changes
outcome probabilities) or (2) a ground truth that moves according to a random walk.

Another area of future work would be to employ our simulation framework to explore the
various types of scoring rules and AMMs that have been developed since the LMSR and LS-
LMSR. For instance, our brief analysis in Appendix B could launch a much deeper study of the
Rikkido scoring rule [11], and another AMM model that would be interesting to investigate is
the Bayesian Market Maker [3].

Finally, one limitation of our smart contract implementation is its gas inefficiency. The
development of a more efficient floating-point library could greatly decrease gas costs. While we
found PRBMath [2] to be the most efficient existing open-source Solidity floating-point library,
improvements to the natural log and exponential functions could increase the gas efficiency of
our contract.

10

COS/ECE 473 Princeton University

7 Code

The code for this project can be found in our GitHub repository here. The PredictionMar-
kets.ipynb notebook contains our Python simulation code and our smart contract Solidity code
pasted in, while the solidity folder contains our smart contract code and Truffle testing suite.

References

[1] Balaji Srinivasan (@balajis). Blockchain-based prediction markets. https://twitter.

com/balajis/status/1087069353688715264?lang=en, Jan. 2019.

[2] Paul Berg. Prbmath. https://github.com/PaulRBerg/prb-math.

[3] Aseem Brahma, Mithun Chakraborty, Sanmay Das, Allen Lavoie, and Malik Magdon-
Ismail. A Bayesian Market Maker. In Proceedings of the 13th ACM Conference on Elec-
tronic Commerce, EC ’12, page 215–232, New York, NY, USA, 2012. Association for
Computing Machinery.

[4] Yiling Chen and David M. Pennock. Designing markets for prediction. AI Magazine,
31(4):42–52, Dec. 2010.

[5] Yiling Chen and David M. Pennock. A utility framework for bounded-loss market makers.
CoRR, abs/1206.5252, 2012.

[6] Robin Hanson. Logarithmic market scoring rules for modular combinatorial information
aggregation. Journal of Prediction Markets, 1, May 2003.

[7] Gnosis Ltd. Gnosis: The community-run chain. https://www.gnosis.io/.

[8] PM Research LTD. Augur: Your global, no-limit betting platform. https://augur.net/.

[9] Andrew Nguyen, Loi Luu, and Ming Ng. Dynamic Automated Market Making. https:

//files.kyber.network/DMM-Feb21.pdf, Feb. 2021.

[10] Abraham Othman, David M. Pennock, Daniel M. Reeves, and Tuomas Sandholm. A
practical liquidity-sensitive automated market maker. ACM Trans. Econ. Comput., 1(3),
Sep. 2013.

[11] Numa De Pablo. Introducing Zeitgeist’s “Rikiddo Scoring Rule”. https://medium.com/
zeitgeistseer/introducing-zeitgeists-rikiddo-scoring-rule-89c8222e31c, Jul.
2021.

[12] Tim Roughgarden. CS269I: Incentives in computer science, Lecture 18: Prediction mar-
kets, 2016.

11

https://github.com/amaheshwari25/ECE473/tree/main
https://github.com/amaheshwari25/ECE473/blob/main/PredictionMarkets.ipynb
https://github.com/amaheshwari25/ECE473/blob/main/PredictionMarkets.ipynb
https://twitter.com/balajis/status/1087069353688715264?lang=en
https://twitter.com/balajis/status/1087069353688715264?lang=en
https://github.com/PaulRBerg/prb-math
https://www.gnosis.io/
https://augur.net/
https://files.kyber.network/DMM-Feb21.pdf
https://files.kyber.network/DMM-Feb21.pdf
https://medium.com/zeitgeistseer/introducing-zeitgeists-rikiddo-scoring-rule-89c8222e31c
https://medium.com/zeitgeistseer/introducing-zeitgeists-rikiddo-scoring-rule-89c8222e31c

COS/ECE 473 Princeton University

Appendices

A Additional results on revenue vs. accuracy

(a) LMSR (b) LS-LMSR

Figure 5: Realized revenue against price accuracy over 100 trials. Ground truth p drawn from
(0.1, 0.2).

B Investigations of Zeitgeist’s Rikkido Scoring Rule

(a) Example trading sequence with four periods:
(1) constant trades of size 1, (2) exponentially in-
creasing trade sizes, (3) exponentially decreasing
trade sizes, (4) back to constant trades of size 1.

(b) Rikkido and LS-LMSR values of the b param-
eter in the cost function, over the bet sequence
presented in Figure 6a.

Figure 6: How Rikkido and LS-LMSR vary over periods of varying volatility (for an example
bet sequence).

The key idea of the Rikkido scoring rule is to modify the fixed α parameter of LS-LMSR
in such a way that will discourage trading (due to higher prices) during high volatility periods,

12

COS/ECE 473 Princeton University

while encouraging trading during low volatility periods. Specifically, the fixed α is modified
to α = f + η(r) [11], where f is again some fixed fee but now r is a term that quantifies
the volatility in the market, and η is some non-decreasing function. The initial Zeitgeist PM
development of Rikkido defines r as a ratio of volume in the market in the last t periods
compared to the last t + k period (using an exponential moving average), such that high r
means high volume recently compared to before. Thus a larger r contributes to a higher α,
which in turn discourages trading because prices increase with α.

To visualize and investigate this behavior numerically, we compared the overall b parameter
(b = α

∑
i qi) in LS-LMSR and Rikkido, over the course of a trading sequence with four periods

shown in Figure 6a. The corresponding effects on the Rikkido and LS-LMSR b values is shown
in Figure 6b. The key takeaway is that while LS-LMSR b is non-decreasing (given that α is
fixed and quantity is non-decreasing), the Rikkido b fluctuates more — in particular, increasing
more in higher volatility (higher volume) periods, while sharply dropping in value to encourage
trading when volatility begins falling.

13

	Introduction
	Prediction Markets
	Why in DeFi?
	Our Work

	Theory
	Scoring Rules
	Construction of Automated Market Makers
	Desirable Properties in AMMs
	A Liquidity-Sensitive LMSR AMM

	Approach
	Overview
	Modeling a Prediction Market
	Noisy Information Simulation

	Results
	DeFi Applications
	Smart Contract Development in Solidity
	Augur and Gnosis
	Zeitgeist PM and the Rikkido Scoring Rule

	Conclusion and Future Work
	Discussion
	Future Work

	Code
	Appendices
	Additional results on revenue vs. accuracy
	Investigations of Zeitgeist's Rikkido Scoring Rule

